[1] A. Ghaedi, H. Gorginpour, and E. Noroozi, “Operation studies of the power systems containing combined heat and power plants”, J. Oper. Autom. Power Eng., vol. 9, pp. 160-171, 2020.
[2] S. D. Beigvand, H. Abdi, and M. La Scala, “Combined heat and power economic dispatch problem using gravitational search algorithm”, Electr. Power Syst. Res., vol. 133, pp. 160-172, 2016.
[3] P. Hajiamoosha et al., “Stochastic energy management in a renewable energy-based microgrid considering demand response program”, Int. J. Electr. Power Energy Syst., vol. 129, p. 106791, 2021.
[4] T. Niknam, A. Fard, and A. Baziar, “Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants”, Energy, vol. 42, pp. 563-73, 2012.
[5] A. Elaiw, A. Shehata, and M. Alghamdi, “A model predictive control approach to combined heat and power dynamic economic dispatch problem”, Arabian J. Sci. Eng., vol. 39, pp. 7117-25, 2014.
[6] T. Niknam et al., “A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch”, Energy, vol. 42, pp. 530-45, 2012.
[7] F. Rooijers and R. Amerongen, “Static economic dispatch for co-generation systems”, IEEE Trans. Power Syst., vol. 9, pp. 1392-98, 1994.
[8] T. Guo, M. Henwood, and M. Ooijen, “An algorithm for combined heat and power economic dispatch”, IEEE Trans. Power Syst., vol. 11, pp. 1778-84, 1996.
[9] A. Sashirekha et al., “Combined heat and power (CHP) economic dispatch solved using Lagrangian relaxation with surrogate subgradient multiplier updates”, Int. J. Electr. Power Energy Syst., vol. 44, pp. 421-30, 2013.
[10] P. Havel and T. Šimovič, “Optimal planning of cogeneration production with provision of ancillary services”, Electr. Power Syst. Res., vol. 95, pp. 47-55, 2013.
[11] S. Makkonen and R. Lahdelma, “Non-convex power plant modelling in energy optimisation”, Europ. J. Oper. Res., vol. 171, pp. 1113-26, 2006.
[12] H. Abdolmohammadi and A. Kazemi, “A benders decomposition approach for a combined heat and power economic dispatch”, Energy Convers. Manage., vol. 71, pp. 21-31, 2013.
[13] A. Jubril, A. Adediji, and O. Olaniyan, “Solving the combined heat and power dispatch problem: A semi-definite programming approach”, Electr. Power Compon. Syst., vol. 40, pp. 1362-76, 2012.
[14] P. Rao, “Combined heat and power economic dispatch: a direct solution”, Electr. Power Compon. Syst., vol. 34, pp. 1043-56, 2006.
[15] Z. Geem and Y. Cho, “Handling non-convex heat-power feasible region in combined heat and power economic dispatch”, Int. J. Electr. Power Energy Syst., vol. 34, pp. 171-73, 2012.
[16] G. Piperagkas, A. Anastasiadis, and N. Hatziargyriou, “Stochastic PSO-based heat and power dispatch under environmental constraints incorporating CHP and wind power units”, Electr. Power Syst. Res., vol. 81, pp. 209-18, 2011.
[17] P. Ahmadi and I. Dincer, “Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)”, Energy, vol. 35, pp. 5161-72, 2010.
[18] J. Wang, Y. Jing, and C. Zhang, “Optimization of capacity and operation for CCHP system by genetic algorithm”, Appl. Energy, vol. 87, pp. 1325-35, 2010.
[19] Y. Song and Q. Xuan, “Combined heat and power economic dispatch using genetic algorithm based penalty function method”, Electr. Machines Power Syst., vol. 26, pp. 363-72, 1998.
[20] M. Basu, “Bee colony optimization for combined heat and power economic dispatch”, Expert Syst. Appl., vol. 38, pp. 13527-31, 2011.
[21] B. Ivatloo, M. Dalvand, and A. Rabiee, “Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients”, Electr. Power Syst. Res., vol. 95, pp. 9-18, 2013.
[22] E. Khorram and M. Jaberipour, “Harmony search algorithm for solving combined heat and power economic dispatch problems”, Energy Convers. Manage., vol. 52, pp. 1550-4, 2011.
[23] A. Vasebi, M. Fesanghary, and S. Bathaee, “Combined heat and power economic dispatch by harmony search algorithm”, Int. J. Electr. Power Energy Syst., vol. 29, pp. 713-19, 2007.
[24] [24] T. Jayabarathi et al., “Combined heat and power economic dispatch problem using the invasive weed optimization algorithm”, Frontiers Energy, vol. 8, pp. 25-30, 2014.
[25] M. Basu, “Artificial immune system for combined heat and power economic dispatch”, Int. J. Electr. Power Energy Syst., vol. 43, pp. 1-5, 2012.
[26] M. Hagh, S. Teimourzadeh, and M. Alipour, “Combined heat and power dispatch using modified group search optimization method”, Int. Power Syst. Conf., 2013.
[27] P. K. Roy, C. Paul, and S. Sultana, "Oppositional teaching learning based optimization approach for combined heat and power dispatch”, Int. J. Electr. Power Energy Syst., vol. 57, pp. 392-403, 2014.
[28] A. Yazdani et al., “Combined heat and power economic dispatch problem using firefly algorithm”, Frontiers Energy, vol. 7, pp. 133-9, 2013.
[29] Y. Song, C. Chou, and T. Stonham, “Combined heat and power economic dispatch by improved ant colony search algorithm”, Electr. Power Syst. Res., vol. 52, pp. 115-21, 1999.
[30] N. Ghorbani, “Combined heat and power economic dispatch using exchange market algorithm”, Int. J. Electr. Power Energy Syst., vol. 82, pp. 58-66, 2016.
[31] M. Basu, “Combined heat and power economic dispatch by using differential evolution”, Electr. Power Compon. Syst., vol. 38, pp. 996-1004, 2010.
[32] M. Sudhakaran and S. Slochanal, “Integrating genetic algorithms and tabu search for combined heat and power economic dispatch”, Conf. Convergent Technol. Asia-Pacific Reg., 2003.
[33] Y. Ouyang, Q. Niu, and Y. Zhang, “Combined heat and power economic dispatch using differential evolution”, Proc. Int. Conf. Network, Communication Comput., 2017.
[34] H. Shayanfar et al., “Combined heat and power economic dispatch solution using iterative cultural algorithm”, Proc. Int. Conf. Artificial Intell., 2017.
[35] A. Rastgou and S. Bahramara, “An adaptive modified firefly algorithm to unit commitment problem for large-scale power systems”, J. Oper. Autom. Power Eng., vol. 9, pp. 68-79, 2021.
[36] A. Rastgou, J. Moshtagh, and S. Bahramara, “Probabilistic power distribution planning using multi-objective harmony search algorithm”, J. Oper. Autom. Power Eng., vol. 6, pp. 111-125, 2018.
[37] L. Papageorgiou and E. Fraga, “A mixed integer quadratic programming formulation for the economic dispatch of generators with prohibited operating zones”, Electr. Power Syst. Res., vol. 77, pp. 1292-96, 2007.
[38] M. Dalvand et al., “A two-stage mathematical programming approach for the solution of combined heat and power economic dispatch”, IEEE Syst. J., vol. 14, pp. 2873-81, 2019.
[39] T. Victoire and A. Jeyakumar, “Reserve constrained dynamic dispatch of units with valve-point effects”, IEEE Trans. Power Syst., vol. 20, pp. 1273-82, 2005.
[40] M. Alipour, B. Ivatloo, and K. Zare, “Stochastic scheduling of renewable and CHP-based microgrids”, IEEE Trans. Ind. Inform., vol. 11, pp. 1049-58, 2015.
[41] R. Rosenthal, GAMS: A User’s Guide, GAMS Development Corporation, Washington, 2011.
[42] L. Cooper and D. Steinberg, Methods and Applications of Linear Programming, firsted., Saunders, United States of America, 1974.
[43] M. Hagh et al., “Improved group search optimization method for solving CHPED in large scale power systems”, Energy Convers. Manage., vol. 80, pp. 446-56, 2014.
[44] N. Jayakumar et al., “Grey wolf optimization for combined heat and power dispatch with cogeneration systems”, Int. J. Electr. Power Energy Syst., vol. 74, pp. 252-64, 2016.