Energy Management Strategy of Stand-alone Photovoltaic System in Cathodic Protection Pipeline

Document Type: Research paper

Author

Department of Electrical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

‎ In this paper, the stand-alone photovoltaic system for cathodic protection of underground pipelines is presented. The proposed system offers continuous and automatic adjustment of the applied voltage so that the buried pipelines receive the exact current. A modified perturb and observe (P&O) algorithm for maximum power point tracking (MPPT) is used to improve dynamic and steady state performance. The battery stores excess energy generated by PV array and supplies the load when there is a shortage of the photo voltaic (PV) power. To extend the battery lifetime and the system efficiency, the battery is connected to the DC link by a ZVS bidirectional Buck-Boost converter. A classic PI controller regulates output voltage by controlling the duty cycle of the converter. The supervisor controls the converter to operate system in suitable modes based on the state of charge (SOC) of the battery and DC link voltage. The simulation verified that the output voltage obtains the constant voltage under any climatic conditions.

Keywords

Main Subjects


[1]       A.W. Peabody, “Control of pipeline corrosion”, by NACE International Second Edition, 2001.

[2]       B. Laoun, k.N. boucha, L.serir, “Cathodic protection of a buried pipeline by solar energy”, Revue des Energies Renouvelables, vol. 12, no.1, pp. 99-104, 2008.

[3]       B James, P.E Bushman, “Corrosion and cathodic protection theory”, Bushman & Associates, Inc. -P.O. Box 425 - Medina, Ohio 44256 USA.

[4]       Adrian L. Verhiel, “The effects of high-voltage dc power transmission systems on buried metallic pipelines”, IEEE Trans. Ind.  Appl., vol. 7, no. 3, 1971

[5]       P.R. Mishra, J.C. Joshi, B. Roy, “Design of a solar photovoltaic-power mini cathodic protection system”, Sol. Energ. Mat. Sol. Cells., vol. 61, pp. 383-391, 2000.

[6]       R.A. Wagdy, “Design of control circuit of solar photovoltaic powered regulated cathodic protection system”, Sol. Energy, vol. 55, no.5, pp. 363-365, 1995

[7]       A. A. Ghassami, S. M. Sadeghzadeh, A. Soleimani, “A high performance maximum power point tracker for PV systems” Int. J. Electr. Power Energy Syst., vol. 53, pp. 237-243, 2013

[8]       T. Zhou, W. Sun, “Study on maximum power point tracking of photovoltaic array in irregular shadow,” Int. J. Electr. Power Energy Syst., vol. 66, pp. 227-234, 2015.

[9]       N. Ponkarthik, K. Kalidasa Murugavel, “Performance enhancement of solar photovoltaic system using novel maximum power point tracking,” Int. J. Electr. Power Energy Syst., vol. 60, pp.1-5, 2014

[10]    A. Murtaza, M. Chiaberge, M. D. Giuseppe, D. Boero, “A duty cycle optimization based hybrid maximum power point tracking technique for photovoltaic systems,” Int. J. Electr. Power Energy Syst., vol. 59, pp. 141-154, 2014

[11]    V. Dash, P. Bajpai, “Power management control strategy for a stand-alone solar photovoltaic-fuel cell-battery hybrid system,” Sustainable Energy Technol. Assess., vol.9, pp. 68-80, 2015.

[12]    W. Caisheng, H. Nehrir, “Power management of a stand-alone Wind/ Photovoltaic-Fuel cell Energy system,” IEEE Trans. Energy Convers., vol.23, no.3, pp.957-67, 2008.

[13]    Y. Hung, Y. Tung, C.H. Chang, “Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain,” Appl. Energy, vol.173, pp.184-196, 2016

[14]    J.B. Almada, R.P.S. Leão, R.F. Sampaio, G.C. Barroso, “A centralized and heuristic approach for energy management of an AC microgrid,” Renew. Sustainable Energy Rev., vol.60, pp.1396-1404, 2016.

[15]    B.M. Radhakrishnan, D. Srinivasan, “A multi-agent based distributed energy management scheme for smart grid applications,” Energy, vol. 103, pp.192-204, 2016.

[16]    Z. Liao, X. Ruan, “A novel power management control strategy for stand-alone photovoltaic power system,” in Proc. of the IEEE 6th International Power Electronics and Motion Control Conference, pp. 445-449, Wuhan, China, 2009.

[17]    K. Sun, L. Zhang, Y. Xing, J. M. Guerrer, “A distributed control strategy based on dc bus signalling for modular photovoltaic generation systems with battery energy storage,” IEEE Trans. Power Electron., vol. 26, no. 10, 2011.

[18]    N. Karami, N. Moubayed, R. Outbib, “Energy management for a PEMFC-PV hybrid system,” Energy Conv. Manag., vol. 82, pp. 154-168, 2014.

[19]    I. Kashif, S. S. Zainal. “A comprehensive MATLAB simulink PV system simulator with partial shading capability based on two-diode model,” Sol. Energy, vol.85, pp.2217-2227, 2011.

[20]    Faran Electronic Industries Co. , http://www.faranco-rp.net

[21]    R. W. Erickson, D.Maksimovic,“ Fundamentals of power electronics second edition”, Publisher Kluwer Academic Publishers 25/04,2002.

[22]    E. shokati asl; M. Shadnam, M. Sabahi, “High performance Cuk converter considering non-linear inductors for photovoltaic system applications,” J. Oper. Autom. Power Eng., vol. 3, no. 2, pp.158-166, 2015.

[23]    A. Pandey, N. Dasgupta, A. K. Mukerjee , “Design issues in implementing MPPT for improved tracking and dynamic performance”, in Proc. of the 32nd Annual Conference on IEEE Industrial Electronics, pp. 437-439, 2006.

[24]    S. Kharzi, M. Haddadi, A. Malek, “Optimized design of a photovoltaic cathodic protection”, Arab. J. Sci. Eng., vol. 34, no. 2B, 2009.

[25]    P. Thounthong, S. Rael, B. Davit, “Control algorithm of fuel cell and batteries for distributed generation system,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 148-155, 2008.

[26]    F. Boico, B. Lehman, and K. Shujaee, “Solar battery chargers for NIMH batteries,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1600-1609, 2007.

[27]    Sababattery Company, http://en.sababattery.ir/”.