[1] H. Yatimi and E. Aroudam, "Assessment and control of a photovoltaic energy storage system based on the robust sliding mode MPPT controller," Solar Energy, vol. 139,pp. 557-568, December 2016.
[2] J. Javidan, "Energy management strategy of stand-alone photovoltaic system in cathodic protection pipeline," J. Oper. Autom. Power Eng., vol. 4,no. 2, pp. 143-152, 2016.
[3] A. Hatefi Einaddin, A. Sadeghi Yazdankhah, and R. Kazemzadeh, "Power management in a utility connected micro-grid with multiple renewable energy sources," J. Oper. Autom. Power Eng., vol. 5,no. 1, pp. 1-10, 2017.
[4] A. Kheldoun, R. Bradai, R. Boukenoui, and A. Mellit, "A new Golden Section method-based maximum power point tracking algorithm for photovoltaic systems," Energy Convers. Manage., vol. 111,pp. 125-136, March 2016.
[5] V. Jately and S. Arora, "Development of a dual-tracking technique for extracting maximum power from PV systems under rapidly changing environmental conditions," Energy, vol. 133,pp. 557-571, August 2017.
[6] J. Ghazanfari and M. Maghfoori Farsangi, "Maximum power point tracking using sliding mode control for photovoltaic array," Iran. J. Electr. Electron. Eng., vol. 9,no. 3, pp. 189-196, 2013.
[7] P. Lei, Y. Li, and J. E. Seem, "Sequential ESC-Based Global MPPT Control for Photovoltaic Array With Variable Shading," IEEE Trans. Sustain. Energy, vol. 2,no. 3, pp. 348-358, July 2011.
[8] P. Midya, P. T. Krein, R. J. Turnbull, R. Reppa, and J. Kimball, "Dynamic maximum power point tracker for photovoltaic applications," PESC Record. 27th Annu. IEEE Power Electron. Specialists Conf., 1996, pp. 1710-1716 vol.2.
[9] K. Sundareswaran, V. Vignesh kumar, and S. Palani, "Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions," Renewable Energy, vol. 75,pp. 308-317, March 2015.
[10] N. A. Kamarzaman and C. W. Tan, "A comprehensive review of maximum power point tracking algorithms for photovoltaic systems," Renewable Sustain. Energy Rev., vol. 37,pp. 585-598, September 2014.
[11] Z. Wu and D. Yu, "Application of improved bat algorithm for solar PV maximum power point tracking under partially shaded condition," Appl. Soft Comput., vol. 62,pp. 101-109, January 2018.
[12] L. L. Jiang, R. Srivatsan, and D. L. Maskell, "Computational intelligence techniques for maximum power point tracking in PV systems: A review," Renewable Sustain. Energy Rev., vol. 85,pp. 14-45, April 2018.
[13] A. Mellit and S. A. Kalogirou, "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, vol. 70,pp. 1-21, June 2014.
[14] F. Chekired, A. Mellit, S. A. Kalogirou, and C. Larbes, "Intelligent maximum power point trackers for photovoltaic applications using FPGA chip: A comparative study," Solar Energy, vol. 101,pp. 83-99, March 2014.
[15] M. Mao, L. Zhang, P. Duan, Q. Duan, and M. Yang, "Grid-connected modular PV-Converter system with shuffled frog leaping algorithm based DMPPT controller," Energy, vol. 143,pp. 181-190, January 2018.
[16] M. Mao, L. Zhang, Q. Duan, and B. Chong, "Multilevel DC-link converter photovoltaic system with modified PSO based on maximum power point tracking," Solar Energy, vol. 153,pp. 329-342, September 2017.
[17] G. Dileep and S. N. Singh, "An improved particle swarm optimization based maximum power point tracking algorithm for PV system operating under partial shading conditions," Solar Energy, vol. 158,pp. 1006-1015, December 2017.
[18] H. Chaieb and A. Sakly, "A novel MPPT method for photovoltaic application under partial shaded conditions," Solar Energy, vol. 159,pp. 291-299, January 2018.
[19] M. Sarvi, S. Ahmadi, and S. Abdi, "A PSO-based maximum power point tracking for photovoltaic systems under environmental and partially shaded conditions," Prog. Photovoltaics: Res. Appl., vol. 23,no. 2, pp. 201-214, 2015.
[20] S. Daraban, D. Petreus, and C. Morel, "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, vol. 74,pp. 374-388, September 2014.
[21] L. Guo, Z. Meng, Y. Sun, and L. Wang, "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, vol. 144,pp. 501-514, February 2018.
[22] J. Ahmed and Z. Salam, "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Appl. Energy, vol. 119,pp. 118-130, April 2014.
[23] D. F. Teshome, C. H. Lee, Y. W. Lin, and K. L. Lian, "A Modified Firefly Algorithm for Photovoltaic Maximum Power Point Tracking Control Under Partial Shading," IEEE J. Emerging Sel. Top. Power Electron., vol. 5,no. 2, pp. 661-671, June 2017.
[24] J. Prasanth Ram and N. Rajasekar, "A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC)," Energy, vol. 118,pp. 512-525, January 2017.
[25] A. A. Zaki Diab and H. Rezk, "Global MPPT based on flower pollination and differential evolution algorithms to mitigate partial shading in building integrated PV system," Solar Energy, vol. 157,pp. 171-186, November 2017.
[26] K. Kaced, C. Larbes, N. Ramzan, M. Bounabi, and Z. e. Dahmane, "Bat algorithm based maximum power point tracking for photovoltaic system under partial shading conditions," Solar Energy, vol. 158,pp. 490-503, December 2017.
[27] S. Mirjalili, "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm," Knowl.-Based Syst., vol. 89,pp. 228-249, November 2015.
[28] N. Aouchiche, M. S. Aitcheikh, M. Becherif, and M. A. Ebrahim, "AI-based global MPPT for partial shaded grid connected PV plant via MFO approach," Solar Energy, vol. 171,pp. 593-603, 2018/09/01/ 2018.
[29] "MATLAB User’s Guide: R2017a Documentation," MathWorks Inc, Natick, MA, USA, 2017.
[30] B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, "Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System," IEEE Trans. Power Electron., vol. 26,no. 4, pp. 1022-1030, April 2011.
[31] M. A. A. M. Zainuri, M. A. M. Radzi, A. C. Soh, and N. A. Rahim, "Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc-dc converter," IET Renewable Power Gener., vol. 8,no. 2, pp. 183-194, March 2014.
[32] E. Babaei and M. E. S. Mahmoodieh, "Calculation of output voltage ripple and design considerations of SEPIC converter," IEEE Trans. Ind. Electron., vol. 61,no. 3, pp. 1213-1222, March 2014.
[33] S. Liu, Y. Li, and L. Liu, "Analysis of output voltage ripple of buck DC-DC converter and its design," in 2009 2nd Int. Conf. Power Electron. Intell. Transport. Sys. (PEITS), 2009, pp. 112-115.
[34] A. H. E. Khateb, N. A. Rahim, J. Selvaraj, and B. W. Williams, "DC-to-DC converter with low input current ripple for maximum photovoltaic power extraction," IEEE Trans. Ind. Electron., vol. 62,no. 4, pp. 2246-2256, April 2015.
[35] E. Salary, M. R. Banaei, and A. Ajami, "Multi-stage DC-AC converter based on new DC-DC converter for energy conversion," J. Oper. Autom. Power Eng., vol. 4,no. 1, pp. 42-53, 2016.