Analysis and Design of a New Single Switch Non-Isolated Buck-Boost dc-dc Converter

Document Type: Research paper

Authors

1 Department of Electrical Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran

2 Research Institute of Applied Power System Studies, Azarbaijan Shahid Madani University, Tabriz, Iran

Abstract

In this paper, a new transformerless buck-boost converter based on ZETA converter is introduced. The proposed converter has the ZETA converter advantages such as, buck-boost capability and input to output DC insulation. The suggested converter voltage gain is higher than the classic ZETA converter. In the presented converter, only one main switch is utilized. The proposed converter offers low voltage stress of the switch; therefore, the low on-state resistance of the main switch can be selected to decrease losses of the switch. The presented converter topology is simple; hence, the control of the converter is simple. The mathematical analyses of the proposed converter are given. The experimental results confirm the correctness of the analysis.

Keywords

Main Subjects


[1]    B. Kjaer, K. Pedersen, and F. Blaabjerg, “A review of singlephase grid-connected inverters for photovoltaic modules”, IEEE Trans. Ind. Electron., vol. 41, no. 5, pp. 1292-1306, 2005.

[2]    D. Meneses, F. Blaabjery, O. Garcia, J. A. Cobos, “Review and comparison of step-up transformerless topologies for photovoltaic AC-module application”, IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2649-2663, 2013.

[3]    H. S. Lee, H. J. Choe, S. H. Ham and B. Kang, “High-efficiency asymmetric forward-flyback converter for wide output power range”, IEEE Trans. Power Electron., vol. 32, no. 1, pp. 433-440, 2017.

[4]    N. Mohan, T. M. Undeland and W. P. Robbins, “Power Electronis: converters applications and design”, New York: John Wiley & Sons, 1995.

[5]    S. K. Changchien, T. J. Liang, J. F. Chen and L. S. Yang, “Step-up DC-DC converter by coupled inductor and voltage-lift technique”, IET Power Electron., vol. 3, no. 3, pp. 369-378, 2010.

[6]    W. Li and X. He, “Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications”, IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1239-1250, 2011.

[7]    M. Nymand and M. A. Andersen, “High-efficiency isolated boost DC–DC converter for high-power low-voltage fuel-cell applications”, IEEE Trans. Ind. Electron., vol. 589, no. 2, pp. 505-514, 2010.

[8]    F. L. Tofoli, D. C. Pereira, W. J. Paula and D. S. Junior, “Survey on non-isolated high-voltage step-up DC–DC topologies based on the boost converter”, IET Power Electron., vol. 8, no. 8, pp. 2044-2057, 2015.

[9]    X. Zhu, B. Zhang, Z. Li, H. Li and L. Ran, “Extended switched-boost DC-DC converters adopting switched-capacitor/switched-inductor cells for high step-up conversion”,IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 1020-1030, 2017.

[10]  L. Barreto, E. Coelho, V. Farias, J. de Oliveira, L. de Freitas, and J. Vieira, “A quasi-resonant quadratic boost converter using a single resonant network”, IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 552-557, 2005.

[11]  B. R. Lin and H. H. Lu, “Single-phase three-level PWM rectifier”, in Proc. IEEE APEC, pp. 63-68, 1999.

[12]  C. L. Wei and M. H. Shih, “Design of a switched -capacitor DC-DC converter with a wide input voltage range”, IEEE Trans. Circuits Syst., vol. 60, no. 6, pp. 1648-1656, 2013.

[13]  K. C. Tseng and C. C. Huang, “High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system”, IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1311-1319, 2013.

[14]  Y. Tang, T. Wang and D. Fu, “Multicell switched-inductor/switched-capacitor combined active-network converters”, IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2063-2072, 2015.

[15]  O. Kirshenboim and M. M. Peretz, “High-efficiency nonisolated converter with very high step-down conversion ratio”, IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3683-3690, 2017.

[16]  S. Hou, J. Chen, T. Sun and X. Bi, “Multi-input step-up converters based on the switched-diode-capacitor voltage accumulator”, IEEE Trans. Power Electron., vol. 31, no. 1, pp. 381-393, 2016.

[17]  G. Wu, X. Ruan and Z. Ye, “Nonisolated high step-up DC–DC converters adopting switched-capacitor cell”, IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 383-393, 2015.

[18]  H. K. Liao, T. J. Liang, L. S. Yang and J. F. Chen, “Non-inverting buck–boost converter with interleaved technique for fuel-cell system”, IET Power Electron., vol. 5, no. 8, pp. 1379-1388, 2012.

[19]  K. Hwu and T. Peng, “A Novel buck–boost converter combining KY and buck converters”, IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2236-2241, 2012.

[20]  S. Miao, F. Wang and X. Ma, “A new transformerless buck–boost converter with positive output voltage”, IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2965-2975, 2016.

[21]  K. I. Hwu and W. Z. Jiang, “Analysis, design and derivation of a two-phase converter”, IET Power Electron., vol. 8, no. 10, pp. 1987-1995, 2015.

[22]  C. T. Pan, C. F. Chuang and C. C. Chu, “A novel transformerless interleaved high step-down conversion ratio DC–DC converter with low switch voltage stress”, IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5290-5299, 2014.

[23]  A. Andrade, L. Schuch and M. Martins, “Very high voltage step-up Integrated Quadratic-Boost-Zeta converter”, in Proc. IEEE 24th Int. Symp. Ind. Electron. (ISIE), pp. 422-427, 2015.

[24]  H. Y. Lee, T. J. Liang, J. F. Chen and K. H. Chen, “Design and implementation of a bidirectional SEPIC-Zeta DC-DC Converter”, in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 101-104, 2014.

[25]  L. Yang, T. Liang and J. Chen, “Transformerless DC–DC converters with high step-up voltage gain”, IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144-3152, 2009.

[26]  E. Salari, M. R. Banaei and A. Ajami, “Analysis of switched inductor three-level DC/DC converter”, J. Oper. Autom. Power Eng., vol. 6, no.1, pp. 126-134, 2018.

[27]  E. Babaei, M. Baruji, H. Mashinchi Maheri, and A. Abbasnezhad, “A developed structure of step-up DC/DC converter by using coupled inductor and active clamped circuit”, J. Oper. Autom. Power Eng., vol. 5, no.1, pp. 31-42, 2017.

[28]  M. A. Salvador, T. B. Lazzarin and R. F. Coelho, “High Step-Up DC–DC Converter with Active Switched-Inductor and Passive Switched-Capacitor Networks”, IEEE Trans. Ind. Electrons., vol. 65, no. 7, pp. 5644-5654, 2018.

[29]  J. Caro, J. Resendiz, J. Maldonado, A. Reyes and A. Gonzalez, “Quadratic buck-boost converter with positive output voltage and minimum ripple point design”, IET Power Electron., vol. 11, no. 7, pp. 1306-1313, 2018.

[30]  A. Rajaei, R. Khazan, M. Mahmoudian, M. Mardaneh and M. Gitizadeh, “A Dual Inductor High Step-Up DC/DC Converter Based on the Cockcroft-Walton Multiplier”, IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9699-9709, 2018.

[31]  Y. Chen, Z. Lu and R. Liang, “Analysis and Design of a Novel High-Step-Up DC/DC Converter With Coupled Inductors”, IEEE Trans. Power Electron., vol. 33, no. 1, pp. 425-436, 2018.

[32]  J. Ai and M. Lin, “High step-up DC–DC converter with low power device voltage stress for a distributed generation system”, IET Power Electron., vol. 11, no. 12, pp. 1955-1963, 2018.

[33]  V. Pires, D. Foito, A. Cordeiro and J. Silva, “A single-switch DC/DC buck-boost converter with extended output voltage”, 2018 7th Int. Conf. Renewable Energy Res. Appl. (ICRERA), pp. 791-796, Paris, France, 2018.

[34]  M. R. Banaei and H. A. F. Bonab, “A nonisolated transformerless high voltage gain buck boost dc-dc converter”, Modares J. Electr. Eng., vol. 15, no. 3, pp. 9-19, 2015.

[35]   M. R. Banaei and H. A. F. Bonab, “High Efficiency Transformerless Buck Boost DC-DC Converter”, Int. J. Circ. Theor. Appl., vol. 45, no. 8, pp. 1129-1150, 2017.

[36]  H. A. F. Bonab and M. R. Banaei, “A Novel High Step-Up DC-DC Converter Based on KY Converter”, JEEE J., vol. 10, no. 1, pp. 5-10, 2016.

[37]  M. R. Banaei, H. A. F. Bonab, “A novel structure for single-switch nonisolated transformerless buck–boost DC–DC converter”, IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 198-205, 2017.