Document Type : Research paper

**Authors**

Department of Electrical Engineering, Razi University, Kermanshah, Iran.

**Abstract**

**Keywords**

[1] D. Olivares et al. “Trends in microgrid control”, *IEEE Trans. Smart Grid*, vol. 54, pp. 1905-19, 2014.

[2] W. Shi et al., “Real-time energy management in microgrids”, *IEEE Trans. Smart Grid*, vol. 81, pp. 228-38, 2015.

[3] W. Hu, P. Wang and H. Gooi, “Toward optimal energy management of microgrids via robust two-stage optimization”, *IEEE Trans. Smart Grid*, vol. 92, pp. 1161-74, 2016.

[4] B. Panigrahi et al., “Multi-objective fuzzy dominance based bacterial foraging algorithm to solve economic emission dispatch problem”, *Energy*, vol. 35, pp. 4761-70, 2010.

[5] R. Hamidi et al., “Distributed cooperative control system for smart microgrids”, *Electr. Power Syst. Res.*, vol. 130, pp. 241-250, 2016.

[6] L. Vasquez et al., “Optimal energy management within a microgrid: a comparative study”, *Energies*, vol. 118, pp. 1-22, 2018.

[7] J. Guerrero et al., “Advanced control architectures for intelligent microgrids—Part II: Power quality, energy storage, and AC/DC microgrids”, *IEEE Trans. Ind. Electron.*, vol. 60, pp. 1263-70, 2012.

[8] A. Kaur, J. Kaushal and P. Basak, “A review on microgrid central controller”, *Renew. Sustain. Energy Rev.,* vol. 55, pp. 338-45, 2016.

[9] A. Bidram and A. Davoudi, “Hierarchical structure of microgrids control system”, *IEEE Trans. Smart Grid,* vol. 3, pp. 1963-76, 2012.

[10] L. Minchala-Avila et al., “A review of optimal control techniques applied to the energy management and control of microgrids”, *Procedia Comput. Sci.*, vol. 52, pp. 780-87, 2015.

[11] F. Katiraei et al., “Microgrids management”, *IEEE Power Energy Mag.*, vol. 6, pp. 54-65, 2008.

[12] Z. Shuai et al., “Microgrid stability: Classification and a review”, *Renew. Sustain. Energy Rev.*, vol. 58, pp. 167-179, 2016.

[13] H. Moradi, A. Abtahi and M. Esfahanian, “Optimal operation of a multi-source microgrid to achieve cost and emission targets”, *IEEE Power Energy Conf.*, 2016.

[14] L. Dulău and D. Bică, “Optimization of generation cost in a microgrid considering load demand”, *Proc. Manuf.*, vol. 32, pp. 390-396, 2019.

[15] M. Zia, E. Elbouchikhi and M. Benbouzid, “Microgrids energy management systems: A critical review on methods, solutions, and prospects”, *Appl. Energy*, vol. 222, pp. 1033-55, 2018.

[16] R. Asad and A. Kazemi, “A quantitative analysis of effects of transition from ac to dc system, on loads and generation”, *IEEE Smart Grid Conf*., 2012.

[17] S. Bahrami, V. Wong and J. Jatskevich, “Optimal power flow for AC-DC networks”, *IEEE Int. Conf. Smart Grid Commun.,* 2014.

[18] M. Zolfaghari, M. Abedi and G. Gharehpetian, “Power flow control of interconnected AC-DC microgrids in grid-connected hybrid microgrids using modified UIPC”, *IEEE Trans. Smart Grid*, vol. 10.6, pp. 6298-07, 2016.

[19] M. Rezvani and S. Mehraeen, “A new approach for steady-state analysis of a hybrid AC-DC microgrid”, *IEEE Texas Power Energy Conf.*, 2019.

[20] T. Adefarati and R. Bansal, “Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources”, *Appl. Energy*, vol. 206, pp. 911-33, 2017.

[21] A. Einaddin, A. Yazdankhah and R. Kazemzadeh, “Power management in a utility connected micro-grid with multiple renewable energy sources”, *J. Oper. Autom. Power Eng.*, vol. 5, pp. 1-10, 2017.

[22] K. Oureilidis and C. Demoulias, “A fault clearing method in converter-dominated microgrids with conventional protection means”, *IEEE Trans. Power Electron.*, vol. 31 pp. 4628-40, 2015.

[23] J. Lopes, A. Madureira and C. Moreira, “A view of microgrids”, *Wiley Interdiscip. Rev.: Energy Environ.*, vol. 2, pp. 86-103, 2013.

[24] Y. Xuan, N. Li and Z. Xu, “A new control strategy with fault ride through capability for VSC based offshore high power oil pump motor power supply system”, *IEEJ Trans. Electr. Electron. Eng.*, vol. 11, pp. 655-64, 2016.

[25] Z. Li et al., “An optimal power flow algorithm for AC/DC hybrid power systems with VSC based MTDC considering converter power losses and voltage droop control strategy”, *IEEJ Trans. Electr. Electron. Eng.*, vol. 13, pp. 1690-98, 2018.

[26] E. Elattar, “Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources”. *Energy*, vol. 159, pp. 496-507, 2018.

[27] S. Brodsky and R. Hahn, “Assessing the influence of power pools on emission constrained economic dispatch”, *IEEE Trans. Power Syst.*, vol. 1, pp. 57-62, 1986.

[28] M. Banaei, “Multi-stage DC-AC converter based on new DC-DC converter for energy conversion”, *J. Oper. Autom. Power Eng.*, vol. 4, pp. 42-53, 2016.

[29] A. Martinez et al., “Modeling of VSC-based HVDC systems for a Newton-Raphson OPF algorithm”, *IEEE Trans. Power Syst.*, vol. 22, pp. 1794-1803, 2007.

[30] A. Martínez, C. Esquivel and C. Camacho, “Voltage source converter based high-voltage DC system modeling for optimal power flow studies”, *Electr. Power Compon. Syst.,* vol. 40, pp. 312-20, 2012.

[31] M. Baradar, M. Hesamzadeh and M. Ghandhari, “Modelling of multi-terminal HVDC systems in optimal power flow formulation”, *IEEE Electr. Power Energy Conf.*, pp. 170-175, 2012.

[32] R. Wiget and G. Andersson, “Optimal power flow for combined AC and multi-terminal HVDC grids based on VSC converters”, *IEEE Power Energy Soc. Meet., *2012.

[33] M. Baradar, M. Hesamzadeh and M. Ghandhari, “Second-order cone programming for optimal power flow in VSC-type AC-DC grids”, *IEEE Trans. Power Syst.*, vol. 28.4, pp. 4282-91, 2012.

[34] S. Rodrigues et al., “Optimal power flow control of VSC-based multiterminal DC network for offshore wind integration in the north sea”, *IEEE J. Emerg. Selected Topics Power Electron.*, vol. 1, pp. 260-8, 2013.

[35] M. Aragüés-Peñalba et al., “Optimal power flow tool for mixed high-voltage alternating current and high-voltage direct current systems for grid integration of large wind power plants”, *IET Renew. Power Gener.*, vol. 9, pp. 876-81, 2015.

[36] J. Cao et al., “Minimization of transmission loss in meshed AC/DC grids with VSC-MTDC networks”, *IEEE Trans. Power Syst.*, vol. 28, pp. 3047-55, 2013.

[37] M. Aragues-Penalba et al., “Optimal power flow tool for hybrid AC/DC systems”, *IET Int. Conf. AC and DC Power Transm.*, 2015.

[38] D. Dhua, S. Huang and Q. Wu, “Optimal power flow modelling and analysis of hybrid AC-DC grids with offshore wind power plant”, *Energy Proc.*, vol. 141, pp. 572-9, 2017.

[39] D. Kotur and P. Stefanov, “Optimal power flow control in the system with offshore wind power plants connected to the MTDC network”, *Int. J. Electr. Power Energy Syst.*, vol. 105, pp. 142-150, 2019.

[40] B. Zakeri and S. Syri, “Electrical energy storage systems: A comparative life cycle cost analysis”, *Renew. Sustain. Energy rev.*, vol. 42, pp. 569-96, 2015.

[41] S. Brodsky and R. Hahn, “Assessing the influence of power pools on emission constrained economic dispatch”, *IEEE Power Eng. Rev.* vol. PER-6.2, pp. 30-31, 1986.

[42] P. Venkatesh, R. Gnanadass and N. Padhy, “Comparison and application of evolutionary programming techniques to combined economic emission dispatch with line flow constraints”, *IEEE Trans. Power syst.*, vol. 18, pp. 688-97, 2003.

[43] M. Bhoye et al., “An emission constraint economic load dispatch problem solution with microgrid using JAYA algorithm”, *Int. Conf. Energy Efficient Technol. Sustain., *pp. 497-502, 2016.

[44] S. Alfredo, “Evolutionary multi objective environmental economic dispatch: stochastic & deterministic approaches”, *MSc. thesis, Italy: university of del salento*, 2019.

[45] T. Gildenhuys et al., “Optimization of the operational cost and environmental impact of a multi-microgrid system”, *Energy Proc.*, vol. 158, pp. 3827-32, 2019.

[46] V. Sarfi, I. Niazazari and H. Livani, “Multiobjective fireworks optimization framework for economic emission dispatch in microgrids”, *North American Power Symp., *pp. 1-6, 2016.

[47] F. Gazijahani, A. Abadi and J. Salehi, “Optimal multi-objective operation of multi microgrids with considering uncertainty”, *Power Syst. Conf., *pp. 228-35, 2016.

[48] Y. Li et al., “Multi-objective optimal dispatch of microgrid under uncertainties via interval optimization”, *IEEE Trans. Smart Grid,* vol. 10, pp. 2046-58, 2017.

[49] T. Adefarati, C. Ramesh and J. Jackson, “Reliability and economic evaluation of a microgrid power system”, *Energy Proc., *vol. 142, pp.43-48, 2017.

[50] V. Jani and H. Abdi, “Optimal allocation of energy storage systems considering wind power uncertainty”, *J. Energy Storage*, vol. 20, pp. 244-53, 2018.

[51] J. Radosavljević, “A solution to the combined economic and emission dispatch using hybrid PSOGSA algorithm”, *Appl. Artif. Intell.*, vol. 30, pp. 445-74, 2016.

[52] Z. Liu et al., “Wind-solar micro grid reliability evaluation based on sequential monte carlo”, *IEEE* *Int. Conf. Probab. Methods Appl. Power Syst.*, 2016.

[53] N. Nikmehr and S. Ravadanegh, “Optimal power dispatch of multi-microgrids at future smart distribution grids”, *IEEE Trans. Smart Grid*, vol.6, pp.1648-57, 2015.

[54] J. Zhan et al., “Impacts of wind power penetration on risk constrained economic dispatch”, *IEEE PES Asia-Pacific Power Energy Eng. Conf.,* 2013.

[55] A. Maulik and D. Das, “Optimal operation of a droop-controlled DCMG with generation and load uncertainties”, *IET Gener. Transm. Distrib.*, vol. 12, pp. 2905-17, 2018.

[56] T. Niknam, F. Golestaneh and A. Malekpour, “Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm”, *Energy*, vol. 43, pp. 427-37, 2012.

[57] S. Bahrami and M. Amini, “A decentralized trading algorithm for an electricity market with generation uncertainty”, *Appl. Energy*, vol. 218, pp. 520-32, 2018.

[58] P. Baboli et al., “Energy management and operation modelling of hybrid AC–DC microgrid”, *IET Gener. Transm. Distrib.*, vol. 8, pp. 1700-11, 2014.

[59] M. Hosseinzadeh and F. Salmasi, “Power management of an isolated hybrid AC/DC micro-grid with fuzzy control of battery banks”, *IET Renew. Power Gener.*, vol. 9, pp. 484-93, 2015.

[60] M. Hosseinzadeh and F. Salmasi, “Robust optimal power management system for a hybrid AC/DC micro-grid”, *IEEE Trans. Sustain. Energy*, vol. 6, pp. 675-87, 2015.

[61] P. Li et al., “Optimal operation of AC/DC hybrid microgrid under spot price mechanism”, *IEEE Power Energy Soc. Meet.*, 2016.

[62] C. Qi et al., “A decentralized optimal operation of AC/DC hybrid distribution grids”, *IEEE Trans. Smart Grid*, vol. 9, pp. 6095-105, 2017.

[63] L. Peng et al., “Double-uncertainty optimal operation of hybrid AC/DC microgrids with high proportion of intermittent energy sources”, *J. Modern Power Syst. Clean Energy*, vol. 5, pp. 838-49, 2017.

[64] A. Hussain, V. Bui and H. Kim, “Robust optimal operation of AC/DC hybrid microgrids under market price uncertainties”, *IEEE Access*, vol. 6, pp. 2654-67, 2017.

[65] "OFFSHORE WIND VISION" http://offshorewind. works/wp-content/uploads/2015/11/151106_offshore _ Wind _vision_FINAL. Pdf.

[66] J. Zhu, “Optimization of power system operation”, *John Wiley & Sons*, 2017.

[67] S. Wen et al., “Economic allocation for energy storage system considering wind power distribution”, *IEEE Trans. Power Syst.*, vol. 30, pp. 644-52, 2014.

[68] T. Thakur et al., “A particle swarm optimization solution to NO2 and SO2 emissions for environmentally constrained economic dispatch problem”, *IEEE/PES Transm. Distrib. Conf. Expos.*, 2006.

[69] A. Panosyan and B. Oswald, “Modified Newton-Raphson load flow analysis for integrated AC/DC power systems”, *Int. Univ. Power Eng. Conf.*, vol. 3, pp. 1223-27, 2004.

[70] S. Cole, J. Beerten and R. Belmans, “Generalized dynamic VSC MTDC model for power system stability studies”, *IEEE Trans. Power Syst.*, vol. 25, pp. 1655-62, 2010.

[71] M. Khan et al., “A load flow analysis for AC/DC hybrid distribution network incorporated with distributed energy resources for different grid scenarios”, *Energies*, vol. 11, pp. 367, 2018.

[72] A. Azad et al., “Analysis of wind energy conversion system using Weibull distribution”, *Proc. Eng.*, vol. 90, pp. 725-32, 2014.

[73] Q. Fu, D. Yu and J. Ghorai, “Probabilistic load flow analysis for power systems with multi-correlated wind sources”, *IEEE* *Power Energy Soc. Meet.*, 2011.

[74] R. Waltz et al., “An interior algorithm for nonlinear optimization that combines line search and trust region steps”, *Math. Program.*, vol. 107, pp. 391-408, 2006.

[75] S. Rao, “Engineering optimization: theory and practice”, *John Wiley & Sons*, 2019.

[76] K. Deb, “Multi-objective optimization”, *Search methodologies, *pp. 403-449, 2014.

[77] A. Kidwell, “Optimization under parameter uncertainties with application to product cost minimization”, 2018.

[78] R. Byrd, E. Mary and J. Nocedal, “An interior point algorithm for large-scale nonlinear programming’ *SIAM J. Optim.*, vol. 9, 877-900, 1999.

[79] Mathworks Global Optimization Toolbox User's Guid. MATLAB Global Optimization Toolbox User's Guid, R2017, 2017.

[80] "Test Case P.M. Anderson Power System" http://fglongatt.org/OLD/Test_Case_Anderson.html.

Spring 2022

Pages 13-27

**Receive Date:**15 December 2020**Revise Date:**21 February 2021**Accept Date:**27 March 2021