A Two-Stage Stochastic Programming Model for the Optimal Sizing of Hybrid PV/diesel/battery in Hybrid Electric Ship System

Document Type : Research paper


Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran


Ships play the major role in bulk transportation and they need their special energy system. This paper proposes a stochastic programing method for optimal sizing of a hybrid ship power system with energy storage system (ESS), photovoltaic power (PV) and diesel generator. To account for uncertainties, in this study a two-stage stochastic mixed-integer non-linear programing is used to model the optimal design problem of hybrid system for ships. The uncertainty of the hourly global solar irradiation and its effect on the output power of the PV system is taken into account. The probability density function of the global solar radiation follows a normal distribution. The Monte Carlo sampling approach is used to generate the scenarios with a specified probability and a proper scenario reduction method is used to decrease the computational burden of problem. Three cases are studied and the results are presented and compared.


Main Subjects

[1]    M. S. Eide,. Endresen, R. Skjong, T. Longva, and S. Alvik, “Cost-effectiveness assessment of CO2 reducing measures in shipping,” Marit. Policy Manage., vol. 36, pp. 367-384, 2009.
[2]    N. Rehmatulla and T. Smith, “Barriers to energy efficiency in shipping: A triangulated approach to investigate the principal agent problem,” Energy Policy, vol. 84, pp. 44-57, 2015.
[3]    Buhaug, J. Corbett, Endresen, V. Eyring, J. Faber, S. Hanayama, et al., “Second IMO GHG Study," Int. Marit. Organiz. (IMO), London, UK, vol. 24, 2009.
[4]    A. Malheiro, P. M. Castro, R. M. Lima, and A. Estanqueiro, “Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems,” Renew. Energy, vol. 83, pp. 646-657, 2015.
[5]    R. Hunter and G. Elliot, Wind-diesel systems: a guide to the Tech. Implementation Cambridge University Press, 1994.
[6]    F. Birol, “World energy outlook 2010,” Int. Energy Agency, vol. 1, 2010.
[7]    C. Yan, G. K. Venayagamoorthy, and K. A. Corzine, “Optimal location and sizing of energy storage modules for a smart electric ship power system, ” Proce. IEEE Symp. Compu. Intell. Appl. Smart Grid, 2011, pp. 1-8.
[8]    B. Zahedi, L. E. Norum, and K. B. Ludvigsen, “Optimized efficiency of all-electric ships by dc hybrid power systems,” J. Power Sources, vol. 255, pp. 341-354, 2014.
[9]    E. Ovrum and T. Bergh, “Modelling lithium-ion battery hybrid ship crane operation,” Appl. Energy, vol. 152, pp. 162-172, 2015.
[10]   E. K. Dedes, D. A. Hudson, and S. R. Turnock, “Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping,” Energy Policy, vol. 40, pp. 204-218, 2012.
[11]   M. Majidi and S. Nojavan, “Optimal sizing of energy storage system in a renewable-based microgrid under flexible demand side management considering reliability and uncertainties,” J. Oper. Autom. Power Eng., vol. 5, pp. 205-214, 2017.
[12]   R. Afshan and J. Salehi, “Optimal scheduling of battery energy storage system in distribution network considering uncertainties using hybrid monte carlo-genetic approach,” J. Oper. Autom. Power Eng., vol. 6, pp. 1-12, 2018.
[13]   S. Wen, H. Lan, Y.-Y. Hong, C. Y. David, L. Zhang, and P. Cheng, “Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system,” Appl. Energy, vol. 175, pp. 158-167, 2016.
[14]   L. Wang, D.-J. Lee, W.-J. Lee, and Z. Chen, “Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link,” J. Power Sources, vol. 185, pp. 1284-1292, 2008.
[15]   A. De and L. Musgrove, “The optimization of hybrid energy conversion systems using the dynamic programming model—Rapsody,” Int. J. Energy Res., vol. 12, pp. 447-457, 1988.
[16]   C. D. Barley and C. B. Winn, “Optimal dispatch strategy in remote hybrid power systems,” Solar Energy, vol. 58, pp. 165-179, 1996.
[17]   S. Ashok, “Optimised model for community-based hybrid energy system,” Renew. Energy, vol. 32, pp. 1155-1164, 2007.
[18]   R. Dufo-López and J. L. Bernal-Agustín, “Multi-objective design of PV–wind–diesel–hydrogen–battery systems,” Renew. Energy, vol. 33, pp. 2559-2572, 2008.
[19]   Z. Zhou, J. Zhang, P. Liu, Z. Li, M. C. Georgiadis, and E. N. Pistikopoulos, “A two-stage stochastic programming model for the optimal design of distributed energy systems,” Appl. Energy, vol. 103, pp. 135-144, 2013.
[20]   A. Arabali, M. Ghofrani, M. Etezadi-Amoli, and M. S. Fadali, “Stochastic performance assessment and sizing for a hybrid power system of solar/wind/energy storage,” IEEE Trans. Sustain. Energy, vol. 5, pp. 363-371, 2014.
[21]   M. Alipour, B. Mohammadi-Ivatloo, and K. Zare, “Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs,” Appl. Energy, vol. 136, pp. 393-404, 2014.
[22]   E. Vanem and E. M. Bitner-Gregersen, “Stochastic modelling of long-term trends in the wave climate and its potential impact on ship structural loads,” Appl. Ocean Res., vol. 37, pp. 235-248, 2012.
[23]   A. Glykas, G. Papaioannou, and S. Perissakis, “Application and cost–benefit analysis of solar hybrid power installation on merchant marine vessels,” Ocean Eng., vol. 37, pp. 592-602, 2010.
[24]   K.-J. Lee, D. Shin, D.-W. Yoo, H.-K. Choi, and H.-J. Kim, “Hybrid photovoltaic/diesel green ship operating in standalone and grid-connected mode–Experimental investigation,” Energy, vol. 49, pp. 475-483, 2013.
[25]   F. Adamo, G. Andria, G. Cavone, C. De Capua, A. M. L. Lanzolla, R. Morello, et al., “Estimation of ship emissions in the port of Taranto,” Meas., vol. 47, pp. 982-988, 2014.
[26]   H. Lan, S. Wen, Y.-Y. Hong, C. Y. David, and L. Zhang, “Optimal sizing of hybrid PV/diesel/battery in ship power system,” Appl. Energy, vol. 158, pp. 26-34, 2015.
[27]   N. Rehmatulla, J. Calleya, and T. Smith, “The implementation of technical energy efficiency and CO 2 emission reduction measures in shipping,” Ocean Eng., vol. 139, pp. 184-197, 2017.
[28]   M. J. Ahmad and G. Tiwari, “Optimization of tilt angle for solar collector to receive maximum radiation,” Open Renew. Energy J., vol. 2, pp. 19-24, 2009.
[29]   A. Mellit, “ANN-based GA for generating the sizing curve of stand-alone photovoltaic systems,” Adv. Eng. Software, vol. 41, pp. 687-693, 2010.
[30]   S. A. Kalogirou, “Artificial neural networks in renewable energy systems applications: a review,” Renew. Sustain. Energy Rev., vol. 5, pp. 373-401, 2001.
[31]   A. Mellit, M. Benghanem, and S. Kalogirou, “Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure,” Renew. Energy, vol. 32, pp. 285-313, 2007.
[32]   S. B. Jeyaprabha and A. I. Selvakumar, “Optimal sizing of photovoltaic/battery/diesel based hybrid system and optimal tilting of solar array using the artificial intelligence for remote houses in India,” Energy Build., vol. 96, pp. 40-52, 2015.
[33]   M. A. Gammon, “Optimization of fishing vessels using a Multi-Objective Genetic Algorithm,” Ocean Eng., vol. 38, pp. 1054-1064, 2011.
[34]   B. Rezaie, E. Esmailzadeh, and I. Dincer, “Renewable energy options for buildings: case studies,” Energy Build., vol. 43, pp. 56-65, 2011.
[35]   J. M. Lujano-Rojas, R. Dufo-López, and J. L. Bernal-Agustín, “Probabilistic modelling and analysis of stand-alone hybrid power systems,” Energy, vol. 63, pp. 19-27, 2013.
[36]   T. Markvart: United kingdom: Wiley, 1994.
[37]   Y. A. Gandomi, D. S. Aaron, T. A. Zawodzinski, and M. M. Mench, “In situ potential distribution measurement and validated model for all-vanadium redox flow battery,” J. Electrochem. Soc., vol. 163, pp. A5188-A5201, 2016.
[38]   E. Rodrigues, G. Osório, R. Godina, A. Bizuayehu, J. Lujano-Rojas, J. Matias, et al., “Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete Island,” Energy, vol. 90, pp. 1606-1617, 2015.
[39]   Y. Yang, H. Li, A. Aichhorn, J. Zheng, and M. Greenleaf, “Sizing strategy of distributed battery storage system with high penetration of photovoltaic for voltage regulation and peak load shaving,” IEEE Trans. Smart Grid, vol. 5, pp. 982-991, 2014.
[40]   J. Weniger, T. Tjaden, and V. Quaschning, “Sizing of residential PV battery systems,” Energy Procedia, vol. 46, pp. 78-87, 2014.
[41]   J. Shen, S. Dusmez, and A. Khaligh, “Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications,” IEEE Trans. Ind. Inf., vol. 10, pp. 2112-2121, 2014.
[42]   A. Dolatabadi and B. Mohammadi-Ivatloo, “Stochastic risk-constrained scheduling of smart energy hub in the presence of wind power and demand response,” Appl. Therm. Eng., vol. 123, pp. 40-49, 2017.
[43]   L. Wu, M. Shahidehpour, and T. Li, “Stochastic security-constrained unit commitment,” IEEE Trans. Power Syst., vol. 22, pp. 800-811, 2007.
[44]   W. Rmisch, “Scenario reduction in stochastic programming: an approach using probability metrics,” 2000.
[45]   A. Dolatabadi, M. Jadidbonab, and B. Mohammadi-ivatloo, “Short-term scheduling strategy for wind-based energy hub: a hybrid stochastic/IGDT approach,” IEEE Trans. Sustain. Energy, 2018.
[46]   “GAMS/SCENRED User Guide,” 2009. [Online]. Available: : http://www.gams.com/
[47]   M. Habib, S. Said, M. El-Hadidy, and I. Al-Zaharna, “Optimization procedure of a hybrid photovoltaic wind energy system,” Energy, vol. 24, pp. 919-929, 1999.
[48]   T. Markvart, Solar electricity vol. 6: John Wiley & Sons, 2000.
[49]   A. V. Da Rosa, Fundamentals of renewable energy processes: Academic Press, 2012.
[50]   S. Kaplanis, “New methodologies to estimate the hourly global solar radiation; comparisons with existing models,” Renewable Energy, vol. 31, pp. 781-790, 2006.
[51]   J. Cao and X. Lin, “Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks,” Energy Convers. Manage., vol. 49, pp. 1396-1406, 2008.
[52]   A. El-Sebaii, F. Al-Hazmi, A. Al-Ghamdi, and S. J. Yaghmour, “Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia,” Appl. Energy, vol. 87, pp. 568-576, 2010.
[53]   A. Dolatabadi and B. Mohammadi-Ivatloo, “Stochastic risk-constrained optimal sizing for hybrid power system of merchant marine vessels,” IEEE Trans.Ind. Inf., 2018.
[54]   S. Kaplanis and E. Kaplani, “A model to predict expected mean and stochastic hourly global solar radiation I (h; nj) values,” Renew. Energy, vol. 32, pp. 1414-1425, 2007.
[55]   A. Maleki and A. Askarzadeh, “Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran,” Sustain. Energy Technol. Assess., vol. 7, pp. 147-153, 2014.
[56]   M. Sharafi and T. Y. ELMekkawy, “Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach,” Renew. Energy, vol. 68, pp. 67-79, 2014.
[57]   D. Feldman, G. Barbose, R. Margolis, T. James, S. Weaver, N. Darghouth, et al., “Photovoltaic system pricing trends: historical, recent, and near-term projections. 2014 edition,” Presenta. SunShot, Department Energy, NREL/PR-6A20-62558, 2014.
[58]   R. Walawalkar, J. Apt, and R. Mancini, “Economics of electric energy storage for energy arbitrage and regulation in New York,” Energy Policy, vol. 35, pp. 2558-2568, 2007.
[59]   GeoModel Solar Company. Available: http://solargis.info/doc/solar-and-pv-data
[60]   A. Dolatabadi, B. Mohammadi-ivatloo, M. Abapour, and S. Tohidi, “Optimal stochastic design of wind integrated energy hub,” IEEE Trans. Ind. Inf., 2017.
[61]   S. Pazouki, M.-R. Haghifam, and A. Moser, “Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response,” Int. J. Electr. Power Energy Sys., vol. 61, pp. 335-345, 2014.
Volume 7, Issue 1
May 2019
Pages 16-26
  • Receive Date: 17 January 2018
  • Revise Date: 17 May 2018
  • Accept Date: 02 November 2018
  • First Publish Date: 01 May 2019