Document Type : Research paper

**Authors**

Department of Electrical Engineering, Razi University, Kermanshah, Iran.

**Abstract**

*As a basic tool in power system control and operation, the optimal power flow (OPF) problem searches the optimal operation point via minimizing different objectives and maintaining the control variables within their applicable regions. In recent years, this problem has encountered many challenges due to the presence of renewable energy sources, which has led introducing of a combinatorial type of power networks known as AC/DC hybrid power systems. In this paper, the OPF problem is proposed in an AC/DC hybrid microgrid, including wind power plants. For the first time, the mentioned problem is considered as a multi-objective optimization problem via minimizing fuel cost and emission. The problem is modeled while considering the power flow equations, the voltage limits in AC and DC buses, the AC voltage angle limits, and the firing angle of the converters. Also, due to the uncertain power generated by wind power plants, the probabilistic OPF problem is modeled by the five-point estimation method. To solve the problem, the "fmincon" function in MATLAB software is used by applying the IP algorithm. The simulation case study on a 13-bus sample MG verifies the effectiveness of the proposed method. The numerical results confirm that increasing the wind farm capacity from 14.54 MW to 113 MW, will be led to increasing the fuel cost from 10% to 61%, in case of including the power losses compared to the condition in which they are neglected. It is also observed that in terms of different weights, the total air pollution including the power losses is 2.30 to 2.40 times higher than the total pollution without electrical losses*

**Keywords**

*IEEE Trans. Smart Grid*, vol. 54, pp. 1905-19, 2014.

*IEEE Trans. Smart Grid*, vol. 81, pp. 228-38, 2015.

*IEEE Trans. Smart Grid*, vol. 92, pp. 1161-74, 2016.

*Energy*, vol. 35, pp. 4761-70, 2010.

*Electr. Power Syst. Res.*, vol. 130, pp. 241-250, 2016.

*Energies*, vol. 118, pp. 1-22, 2018.

*IEEE Trans. Ind. Electron.*, vol. 60, pp. 1263-70, 2012.

*Renew. Sustain. Energy Rev.,*vol. 55, pp. 338-45, 2016.

*IEEE Trans. Smart Grid,*vol. 3, pp. 1963-76, 2012.

*Procedia Comput. Sci.*, vol. 52, pp. 780-87, 2015.

*IEEE Power Energy Mag.*, vol. 6, pp. 54-65, 2008.

*Renew. Sustain. Energy Rev.*, vol. 58, pp. 167-179, 2016.

*IEEE Power Energy Conf.*, 2016.

*Proc. Manuf.*, vol. 32, pp. 390-396, 2019.

*Appl. Energy*, vol. 222, pp. 1033-55, 2018.

*IEEE Smart Grid Conf*., 2012.

*IEEE Int. Conf. Smart Grid Commun.,*2014.

*IEEE Trans. Smart Grid*, vol. 10.6, pp. 6298-07, 2016.

*IEEE Texas Power Energy Conf.*, 2019.

*Appl. Energy*, vol. 206, pp. 911-33, 2017.

*J. Oper. Autom. Power Eng.*, vol. 5, pp. 1-10, 2017.

*IEEE Trans. Power Electron.*, vol. 31 pp. 4628-40, 2015.

*Wiley Interdiscip. Rev.: Energy Environ.*, vol. 2, pp. 86-103, 2013.

*IEEJ Trans. Electr. Electron. Eng.*, vol. 11, pp. 655-64, 2016.

*IEEJ Trans. Electr. Electron. Eng.*, vol. 13, pp. 1690-98, 2018.

*Energy*, vol. 159, pp. 496-507, 2018.

*IEEE Trans. Power Syst.*, vol. 1, pp. 57-62, 1986.

*J. Oper. Autom. Power Eng.*, vol. 4, pp. 42-53, 2016.

*IEEE Trans. Power Syst.*, vol. 22, pp. 1794-1803, 2007.

*Electr. Power Compon. Syst.,*vol. 40, pp. 312-20, 2012.

*IEEE Electr. Power Energy Conf.*, pp. 170-175, 2012.

*IEEE Power Energy Soc. Meet.,*2012.

*IEEE Trans. Power Syst.*, vol. 28.4, pp. 4282-91, 2012.

*IEEE J. Emerg. Selected Topics Power Electron.*, vol. 1, pp. 260-8, 2013.

*IET Renew. Power Gener.*, vol. 9, pp. 876-81, 2015.

*IEEE Trans. Power Syst.*, vol. 28, pp. 3047-55, 2013.

*IET Int. Conf. AC and DC Power Transm.*, 2015.

*Energy Proc.*, vol. 141, pp. 572-9, 2017.

*Int. J. Electr. Power Energy Syst.*, vol. 105, pp. 142-150, 2019.

*Renew. Sustain. Energy rev.*, vol. 42, pp. 569-96, 2015.

*IEEE Power Eng. Rev.*vol. PER-6.2, pp. 30-31, 1986.

*IEEE Trans. Power syst.*, vol. 18, pp. 688-97, 2003.

*Int. Conf. Energy Efficient Technol. Sustain.,*pp. 497-502, 2016.

*MSc. thesis, Italy: university of del salento*, 2019.

*Energy Proc.*, vol. 158, pp. 3827-32, 2019.

*North American Power Symp.,*pp. 1-6, 2016.

*Power Syst. Conf.,*pp. 228-35, 2016.

*IEEE Trans. Smart Grid,*vol. 10, pp. 2046-58, 2017.

*Energy Proc.,*vol. 142, pp.43-48, 2017.

*J. Energy Storage*, vol. 20, pp. 244-53, 2018.

*Appl. Artif. Intell.*, vol. 30, pp. 445-74, 2016.

*IEEE*

*Int. Conf. Probab. Methods Appl. Power Syst.*, 2016.

*IEEE Trans. Smart Grid*, vol.6, pp.1648-57, 2015.

*IEEE PES Asia-Pacific Power Energy Eng. Conf.,*2013.

*IET Gener. Transm. Distrib.*, vol. 12, pp. 2905-17, 2018.

*Energy*, vol. 43, pp. 427-37, 2012.

*Appl. Energy*, vol. 218, pp. 520-32, 2018.

*IET Gener. Transm. Distrib.*, vol. 8, pp. 1700-11, 2014.

*IET Renew. Power Gener.*, vol. 9, pp. 484-93, 2015.

*IEEE Trans. Sustain. Energy*, vol. 6, pp. 675-87, 2015.

*IEEE Power Energy Soc. Meet.*, 2016.

*IEEE Trans. Smart Grid*, vol. 9, pp. 6095-105, 2017.

*J. Modern Power Syst. Clean Energy*, vol. 5, pp. 838-49, 2017.

*IEEE Access*, vol. 6, pp. 2654-67, 2017.

*John Wiley & Sons*, 2017.

*IEEE Trans. Power Syst.*, vol. 30, pp. 644-52, 2014.

*IEEE/PES Transm. Distrib. Conf. Expos.*, 2006.

*Int. Univ. Power Eng. Conf.*, vol. 3, pp. 1223-27, 2004.

*IEEE Trans. Power Syst.*, vol. 25, pp. 1655-62, 2010.

*Energies*, vol. 11, pp. 367, 2018.

*Proc. Eng.*, vol. 90, pp. 725-32, 2014.

*IEEE*

*Power Energy Soc. Meet.*, 2011.

*Math. Program.*, vol. 107, pp. 391-408, 2006.

*John Wiley & Sons*, 2019.

*Search methodologies,*pp. 403-449, 2014.

*SIAM J. Optim.*, vol. 9, 877-900, 1999.