[1] J. Wang, R. Wen and R. Yang, “On the procurement and pricing of reactive power service in the electricity market environment”,IEEE PES Gener. Meet., vol. 1, pp. 1120-24, 2004.
[2] J. Zhong and K. Bhattacharya, “Reactive power management in deregulated power systems-A review”, IEEE PES Winter Meet., vol. 2, pp. 1287-92, 2002.
[3] K. Lo and Y. Alturki, “Toward reactive power markets. Part 1: reactive power allocation”, IET Gener. Transm. Distrib., vol. 153, pp. 59-70, 2006.
[4] T. Menezes, L. Da Silva and V. Da Costa, “Dynamic VAR sources scheduling for improving voltage stability margin”, IEEE Trans. Power Syst., vol. 18, pp. 969-71, 2003.
[5] Ch. Su, Ch. Lin, “Fuzzy-based voltage/reactive power scheduling for voltage security improvement and loss reduction”, IEEE Trans. Power Deliv., vol. 16, pp. 319-23, 2001.
[6] V. Sarkar and S. Khaparde, “Reactive power constrained OPF scheduling with 2-D locational marginal pricing”, IEEE Trans. Power Syst., vol. 28, pp. 503-12, 2013.
[7] A. Kumar, S. Srivastava and S. Singh, “A zonal congestion management approach using real and reactive power rescheduling”, IEEE Trans. Power Syst., vol. 19, pp. 554-62, 2004.
[8] S. Corsi et al., “Coordination between the reactive power scheduling function and the hierarchical voltage control of the EHV ENEL system”, IEEE Trans. Power Syst., vol. 10, pp. 686-94, 1995.
[9] B. Venkatesh, G. Sadasivam and M. Khan, “A new optimal reactive power scheduling method for loss minimization and voltage stability margin maximization using successive multi-objective fuzzy LP technique,” IEEE Trans. Power Syst., vol. 15, pp. 844-51, 2000.
[10] R. Youssef, “Implicit generator and SVC modelling for contingency scheduling of reactive power dispatch”, IET Gener. Transm. Distrib., vol. 142, pp. 527-34, 1995.
[11] M. Castro, C. Moreira and L. Carvalho, “Hierarchical optimisation strategy for energy scheduling and volt/var control in autonomous clusters of microgrids”, IET Renew. Power Gener., vol. 14, pp. 27-38, 2020.
[12] S. Pirouzi et al., “A robust optimization approach for active and reactive power management in smart distribution networks using electric vehicles”, IEEE Systems J., vol. 12, pp. 2699-2710, 2018.
[13] M. Mahzouni-Sani, A. Hamidi, D. Nazarpour and S. Golshannavaz, “Multi-objective linearised optimal reactive power dispatch of wind-integrated transmission networks”, IET Gener. Transm. Distrib., vol. 13, pp. 2686-96, 2019.
[14] C. Cañizares et al., “Re-defining the reactive power dispatch problem in the context of competitive electricity markets”, IET Gener. Transm. Distrib., vol. 4, pp. 162-77, 2010.
[15] A. Rabiee, H. Shayanfar and N. Amjady, “Reactive power pricing – problems and a proposal for a competitive market”, IEEE Power Energy Mag., vol. 2009, pp. 19-32, 2009.
[16] N. Amjady, A. Rabiee, H. Shayanfar, “Pay-as-bid based reactive power market”, Energy Convers. Manag., vol. 51, pp. 367-81, 2010.
[17] A. Rabiee, H. Shayanfar, N. Amjady, “Coupled energy and reactive power market clearing considering power system security”, Energy Convers. Manag., vol. 50, pp. 907-15, 2009.
[18] Z. Rather, Z. Chen, P. Thogersen and P. Lund, “Dynamic reactive power compensation of large-scale wind integrated power system”, IEEE Trans. Power Syst., vol. 30, pp. 2516-26, 2015.
[19] S. Mohseni-Bonab et al., “Probabilistic multi objective optimal reactive power dispatch considering load uncertainties using monte carlo simulations”, J. Oper. Autom. Power Eng., vol. 1, pp. 83-93, 2015.
[20] H. Yousefi, S. Gholamian and A. Zakariazadeh, “Distributed voltage control in distribution networks with high penetration of photovoltaic systems”, J. Oper. Autom. Power Eng, vol. 8, pp. 164-171, 2020.
[21] Reliability Test System Task Force, “The IEEE Reliability Test System-1996”, IEEE Trans. Power Syst., vol. 14, pp. 1010-20, 1999.