A Low Input Current Ripple High Step-Up DC-DC Converter with Reduced Voltage Stress for Renewable Energy Application

Document Type : Research paper

Authors

1 Department of Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran

2 Faculty of Engineering and Science, University of Greenwich, Medway, UK

Abstract

This report develops a high step-up topology employing a voltage multiplier cell (VMC) and a coupled inductor for renewable energy usage. The efficiency is improved and the blocking voltage on semiconductors is decreased. The proposed structure achieves a high voltage gain by utilizing a VMC and one coupled inductor. This structure employs only one MOSFET switch, lowering the cost of the converter. Further benefits are the reduced number of components and the low blocking voltage of the switches/diodes. Furthermore, the VMC functions as a clamp circuit, reducing the peak voltage of the switch. Consequently, in the presented converter, a low nominal voltage MOSFET can be operated. The switching modes, steady-state analysis, and comparative study with other comparable converters demonstrate the converter's performance and superiority. A 200W laboratory scale operating under the 25kHz switching frequency and a voltage conversion of 20V~150V is built to validate the theoretical equations. The proposed converter efficiency at the full load is about 96.3%. Also, the normalized maximum voltage stress on switch and diodes for duty cycle D=0.6 and turn ratio N=2 is about 0.33 and 0.8, respectively.

Keywords

Main Subjects


  1. M. Hashemzadeh, V. Marzang, S. Pourjafar, and S. H. Hosseini, “An ultra high step-up dual-input single-output dc–dc converter based on coupled inductor,” IEEE Trans. Ind. Electron., vol. 69, no. 11, pp. 11023–11034, 2021.
  2. -B. Park, G.-W. Moon, and M.-J. Youn, “Nonisolated high step-up boost converter integrated with sepic converter,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2266–2275, 2010.
  3. Pourjafar, H. Shayeghi, S. M. Hashemzadeh, F. Sedaghati, and M. Maalandish, “A non-isolated high step-up dc–dc converter using magnetic coupling and voltage multiplier circuit,” IET Power Electron., vol. 14, no. 9, pp. 1637–1655, 2021.
  4. Shayeghi, S. Pourjafar, S. M. Hashemzadeh, and Blaabjerg, “A high efficiency soft-switched dc–dc converter with high voltage conversion ratio,” Int. J. Circuit Theory Appl., vol. 49, no. 2, pp. 244–266, 2021.
  5. M. Hashemzadeh, E. Babaei, S. H. Hosseini, and M. Sabahi, “Design and analysis of a new coupled inductorbased interleaved high step-up dc-dc converter for renewable energy applications.,” Int. Trans. Electr. Energy Syst., 2022.
  6. M. Hashemzadeh, S. H. Hosseini, E. Babaei, and M. Sabahi, “Design and modelling of a new three winding coupled inductor based high step-up dc–dc converter for renewable energy applications,” IET Power Electron., vol. 15, no. 13, pp. 1322–1339, 2022.
  7. -M. Chen, M.-L. Lao, Y.-H. Hsieh, T.-J. Liang, and K.-H. Chen, “A novel switched-coupled-inductor dc–dc step-up converter and its derivatives,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 309–314, 2014.
  8. Marzang, S. M. Hashemzadeh, P. Alavi, A. KhoshkbarSadigh, S. H. Hosseini, and M. Z. Malik, “A modified triple-switch triple-mode high step-up dc–dc converter,” IEEE Trans. Ind. Electron., vol. 69, no. 8, pp. 8015–8027, 2021.
  9. Kim and S. Choi, “A fully soft-switched single switch isolated dc–dc converter,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4883–4890, 2014.
  10. M. Hashemzadeh, S. H. Hosseini, and V. Marzang, “Increase of the photovoltaic resources power using multiinput dc–dc converter and model-based mppt algorithm,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 7501–7512, 2022.
  11. Kumar and P. Sensarma, “Ripple-free input current high voltage gain dc–dc converters with coupled inductors,” IEEE Trans. Power Electron., vol. 34, no. 4, pp. 3418–3428, 2018.
  12. Nouri and M. Shaneh, “A new interleaved ultra-large gain converter for sustainable energy systems,” IET Power Electron., vol. 14, no. 1, pp. 90–105, 2021.
  13. Shayeghi, S. Pourjafar, and F. Sedaghati, “A buck-boost converter; design, analysis and implementation suggested for renewable energy systems.,” Iran. J. Electr. Electron. Eng., vol. 17, no. 2, 2021.
  14. Shayeghi, S. Pourjafar, M. Maalandish, and S. Nouri, “Non-isolated dc–dc converter with a high-voltage conversion ratio,” IET Power Electron., vol. 13, no. 16, pp. 3797–3806, 2020.
  15. -J. Liang, J.-H. Lee, S.-M. Chen, J.-F. Chen, and L.-S. Yang, “Novel isolated high-step-up dc–dc converter with voltage lift,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1483–1491, 2011.
  16. Shayeghi, S. Pourjafar, S. M. Hashemzadeh, and F. Sedaghati, “Presenting of the magnetic couplingbased transformer-less high step-up dc-dc converter for renewable energy applications,” Int. Trans. Electr. Energy Syst., vol. 2022, pp. 1–15, 2022.
  17. Hassan, D. D.-C. Lu, and W. Xiao, “Single-switch high step-up dc–dc converter with low and steady switch voltage stress,” IEEE Trans. Ind. Electron., vol. 66, no. 12, pp. 9326–9338, 2019.
  18. Sedaghati and S. Pourjafar, “Analysis and implementation of a boost dc–dc converter with high voltage gain and continuous input current,” IET Power Electron., vol. 13, no. 4, pp. 798–807, 2020.
  19. Sadaghati, H. Shayeghi, S. Pourjafar, and S. Hashemzadeh, “A high step-up transformer-less dc-dc converter with continuous input current,” in 2020 11th Power Electron. Drive Syst. Technol. Conf. (PEDSTC), pp. 1–6, IEEE, 2020.
  20. Shayeghi, S. Pourjafar, and S. M. Hashemzadeh, “A switching capacitor based multi-port bidirectional dc–dc converter,” IET Power Electron., vol. 14, no. 9, pp. 1622– 1636, 2021.
  21. Pourjafar, F. Sedaghati, H. Shayeghi, and M. Maalandish, “High step-up dc–dc converter with coupled inductor suitable for renewable applications,” IET Power Electron., vol. 12, no. 1, pp. 92–101, 2019.
  22. Saadatizadeh, E. Babaei, F. Blaabjerg, and C. Cecati, “Three-port high step-up and high step-down dc-dc converter with zero input current ripple,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1804–1813, 2020.
  23. -M. Chen, T.-J. Liang, L.-S. Yang, and J.-F. Chen, “A boost converter with capacitor multiplier and coupled inductor for ac module applications,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1503–1511, 2011.
  24. -P. Hsieh, J.-F. Chen, T.-J. Liang, and L.-S. Yang, “Novel high step-up dc–dc converter with coupled-inductor and switched-capacitor techniques,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 998–1007, 2011.
  25. Gules, W. M. Dos Santos, F. A. Dos Reis, E. F. R. Romaneli, and A. A. Badin, “A modified sepic converter with high static gain for renewable applications,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 5860–5871, 2013.
  26. Hasanpour, A. Baghramian, and H. Mojallali, “A modified sepic-based high step-up dc–dc converter with quasi-resonant operation for renewable energy applications,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3539–3549, 2018.
  27. Tang, T. Wang, and D. Fu, “Multicell switchedinductor/switched-capacitor combined active-network converters,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2063–2072, 2014.
  28. Saadatizadeh, P. C. Heris, X. Liang, and E. Babaei, “Expandable non-isolated multi-input single-output dc-dc converter with high voltage gain and zero-ripple input currents,” IEEE Access, vol. 9, pp. 169193–169219, 2021.
  29. Maalandish, E. Babaei, P. Abolhasani, M. Gheisarnejad, and M.-H. Khooban, “Ultra high step-up soft-switching dc/dc converter using coupled inductor and interleaved technique,” IET Power Electron., 2023.
  30. Shayeghi, S. Pourjafar, S. Hashemzadeh, and F. Sedaghati, “A dc-dc converter with high voltage conversion ratio recommended for renewable energy application,” J. Oper. Autom. Power Eng., vol. 12, no. 3, pp. 186–194, 2024.
  31. Yaqoub Hamza and F. Jumaa, “A new transformerless dc-dc converter for renewable energy applications,” J. Oper. Autom. Power Eng., vol. 12, no. 1, pp. 35–41, 2024.

Articles in Press, Corrected Proof
Available Online from 01 August 2025
  • Receive Date: 22 July 2023
  • Revise Date: 23 September 2023
  • Accept Date: 30 September 2023
  • First Publish Date: 28 January 2024