Document Type : Review paper


Research Laboratory of Physics and Engineers Sciences (LRPSI), Research Team in Embedded Systems, Engineering, Automation, Signal, Telecommunications and Intelligent Materials (ISASTM), Polydisciplinary Faculty (FPBM), Sultan Moulay Slimane University (USMS), Beni Mellal, Morocco.


Utilizing electric vehicles (EVs) in place of conventional vehicles is now necessary to lower carbon dioxide emissions, provide clean energy, and lessen environmental pollution. Numerous researchers are trying to figure out how to make these electric vehicles better in order to address this. Electric motors and batteries are necessary parts of electric cars. As such, the development of these vehicles was associated with the development of these two entities. This review lists all of the sophisticated electric machines, their control schemes, and the embedded systems that are utilized to put these schemes into practice. Due to this review, we determined out, the induction motor and permanent magnet synchronous motor have been demonstrated to be the most efficient and suitable alternative for propulsion drive in electric vehicles. Furthermore, because torque and speed can be controlled simultaneously with minimal noise and ripples, the FOC approach continues to be the ideal control method. This evaluation offers comprehensive information regarding the application of various control measures. Whereas the model- based design technique made it easier for engineers to program, validate, and fine-tune the system’s controllers before deploying it in the field, STM32 and DSP320F28379 are the best embedded systems for implementation because of their low cost and compatibility with the SIMULINK environment.


Main Subjects

  1. K. S. Mohammad and A. S. Jaber, “Comparison of electric motors used in electric vehicle propulsion system,” Indones. J. Electr. Eng. Comput. Sci., vol. 27, no. 1, pp. 11–19, 2022.
  2. M. Kebriaei, A. H. Niasar, and B. Asaei, “Hybrid electric vehicles: An overview,” in 2015 Int. Conf. Connected Veh. Expo (ICCVE), pp. 299–305, IEEE, 2015.
  3. K. Indu and M. Aswatha Kumar, “Electric vehicle control and driving safety systems: A review,” IETE J. Res., vol. 69, no. 1, pp. 482–498, 2023.
  4. Z. Zhu, W. Chu, and Y. Guan, “Quantitative comparison of electromagnetic performance of electrical machines for hevs/evs,” CES Trans. Electr. Mach. Syst., vol. 1, no. 1, pp. 37–47, 2017.
  5. B. Sarlioglu, C. T. Morris, D. Han, and S. Li, “Driving toward accessibility: a review of technological improvements for electric machines, power electronics, and batteries for electric and hybrid vehicles,” IEEE Ind. Appl. Mag., vol. 23, no. 1, pp. 14–25, 2016.
  6. L. Amezquita-Brooks, E. Liceaga-Castro, J. Liceaga-Castro, and C. E. Ugalde-Loo, “Flux-torque cross-coupling analysis of foc schemes: Novel perturbation rejection characteristics,” ISA Trans., vol. 58, pp. 446–461, 2015.
  7. I. Takahashi and T. Noguchi, “A new quick-response and high-efficiency control strategy of an induction motor,” IEEE Trans. Ind. Appl., no. 5, pp. 820–827, 1986.
  8. M. Depenbrock, “Direct self-control (dsc) of inverter fed induktion machine,” in 1987 IEEE Power Electron. Spec. Conf., pp. 632–641, IEEE, 1987.
  9. D. -I. Son, J.-S. Han, J.-S. Park, H.-S. Lim, and G.-H. Lee, “Performance improvement of dtc-svm of pmsm with compensation for the dead time effect and power switch loss based on extended kalman filter,” Electron., vol. 12, no. 4, p. 966, 2023.
  10. Y. Qin, K. Wang, and H. Luo, “Fuzzy direct torque control of surface permanent magnet synchronous motor,” in J. Phys. Conf. Ser., vol. 2396, p. 012016, IOP Publishing, 2022.
  11. A. H. Abosh, Z. Zhu, and Y. Ren, “Reduction of torque and flux ripples in space vector modulation-based direct torque control of asymmetric permanent magnet synchronous machine,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2976–2986, 2016.
  12. V. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, “Model predictive control for power converters and drives: Advances and trends,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 935–947, 2016.
  13. D. Wu, J. Chen, R. Zhu, and G. Hua, “Simplified model predictive flux control for dual inverter fed open end winding induction motor,” in 2019 IEEE 10th Int. Symp. Power Electron. Distrib. Gener. Syst. (PEDG), pp. 1050–1054, IEEE, 2019.
  14. X. Wang, B. Li, D. Gerada, K. Huang, I. Stone, S. Worrall, and Y. Yan, “A critical review on thermal management technologies for motors in electric cars,” Appl. Therm. Eng., vol. 201, p. 117758, 2022.
  15. Z. Zhang, J. Chen, and X. Liu, “Hybrid-excited multi-tooth flux switching brushless machines for ev propulsion,” in 2019 IEEE Transp. Electrif. Conf. Expo (ITEC), pp. 1–5, IEEE, 2019.
  16. D.U. Thakar and R. Patel, “Comparison of advance and conventional motors for electric vehicle application,” in 2019 3rd Int. Conf. Recent Dev. Control Autom. Power Eng. (RDCAPE), pp. 137–142, IEEE, 2019.
  17. W. Cao, A. A. S. Bukhari, and L. Aarniovuori, “Review of electrical motor drives for electric vehicle applications,” Mehran Univ. Res. J. Eng. Technol., vol. 38, no. 3, pp. 525–540, 2019.
  18. V. S. R. Kosuru and A. Kavasseri Venkitaraman, “Trends and challenges in electric vehicle motor drivelines-a review,” Int. J. Electr. Comput. Eng. Syst., vol. 14, no. 4, pp. 485–495, 2023.
  19. S. Thangavel, M. Deepak, T. Girijaprasanna, S. Raju, C. Dhanamjayulu, and S. Muyeen, “A comprehensive review on electric vehicle: battery management system, charging station, traction motors,” IEEE Access, 2023.
  20. J. Xuan, X. Wang, D. Lu, and L. Wang, “Research on the safety assessment of the brushless dc motor based on the gray model,” Adv. Mech. Eng., vol. 9, no. 3, p. 1687814017695438, 2017.
  21. A. E. Aliasand and F. Josh, “Selection of motor foran electric vehicle: A review,” Mater. Today Proc., vol. 24, pp. 1804–1815, 2020.
  22. P. Kumar, D. V. Bhaskar, U. R. Muduli, A. R. Beig, and R. K. Behera, “Iron-loss modeling with sensorless predictive control of pmbldc motor drive for electric vehicle application,” IEEE Trans. Transp. Electrif., vol. 7, no. 3, pp. 1506–1515, 2020.
  23. M. Yılmaz and S. Özdemir, “Review of motors used in commercial electric vehicles,” in 5th Int. Mediterr. Sci. Eng. Congr. (IMSEC 2020), pp. 585–591, 2020.
  24. D. Rimpas, S. D. Kaminaris, D. D. Piromalis, G. Vokas, K. G. Arvanitis, and C.-S. Karavas, “Comparative review of motor technologies for electric vehicles powered by a hybrid energy storage system based on multi-criteria analysis,” Energies, vol. 16, no. 6, p. 2555, 2023.
  25. C. Donaghy-Spargo, “Synchronous reluctance motor technology: opportunities, challenges and future direction,” Eng. Technol. Ref., 2016.
  26. C. M. Spargo, B. C. Mecrow, J. D. Widmer, and C. Morton, “Application of fractional-slot concentrated windings to synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1446–1455, 2014.
  27. C. Liu, K. Chau, C. H. Lee, and Z. Song, “A critical review of advanced electric machines and control strategies for electric vehicles,” Proc. IEEE, vol. 109, no. 6, pp. 1004–1028, 2020.
  28. M. Gobbi, A. Sattar, R. Palazzetti, and G. Mastinu, “Traction motors for electric vehicles: Maximization of mechanical efficiency–a review,” Appl. Energy, vol. 357, p. 122496, 2024.
  29. W. Uddin, T. Husain, Y. Sozer, and I. Husain, “Design methodology of a switched reluctance machine for off-road vehicle applications,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2138–2147, 2016.
  30. O. Khodadadeh, H. M. CheshmehBeigi, and M. H. Mousavi, “Design, simulation and optimisation of a novel low ripple outer-rotor switched reluctance machine for variable speed application,” Int. J. Electron., pp. 1–20, 2023.
  31. K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to ev and hev: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111–121, 2000.
  32. P. Han, M. Cheng, and Z. Chen, “Dual-electrical-port control of cascaded doubly-fed induction machine for ev/hev applications,” IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 1390–1398, 2016.
  33. H. Dahmardeh, M. Ghanbari, and S. Rakhtala, “A novel combined dtc method and sfoc system for three-phase induction machine drives with pwm switching method,” J. Oper. Autom. Power Eng., vol. 11, no. 2, pp. 76–82, 2023.
  34. N. Rivière, G. Volpe, M. Villani, G. Fabri, L. Di Leonardo, and M. Popescu, “Design analysis of a high speed copper rotor induction motor for a traction application,” in 2019 IEEE Int. Electr. Mach. Drives Conf. (IEMDC), pp. 1024–1031, IEEE, 2019.
  35. W. Cai, X. Wu, M. Zhou, Y. Liang, and Y. Wang, “Review and development of electric motor systems and electric powertrains for new energy vehicles,” Automot. Innovation, vol. 4, pp. 3–22, 2021.
  36. M. H. Mousavi, M. E. Karami, M. Ahmadi, P. Sharafi, and F. Veysi, “Robust speed controller design for permanent magnet synchronous motor based on gain-scheduled control method via lmi approach,” SN Appl. Sci., vol. 2, pp. 1–15, 2020.
  37. A. El-Refaie, T. Raminosoa, P. Reddy, S. Galioto, D. Pan, K. Grace, J. Alexander, and K.-K. Huh, “Comparison of traction motors that reduce or eliminate rare-earth materials,” IET Electr. Syst. Transp., vol. 7, no. 3, pp. 207–214, 2017.
  38. S. J. Rind, Y. Ren, Y. Hu, J. Wang, and L. Jiang, “Configurations and control of traction motors for electric vehicles: A review,” Chin. J. Electr. Eng., vol. 3, no. 3, pp. 1–17, 2017.
  39. A. M. Andwari, A. Pesiridis, S. Rajoo, R. Martinez-Botas, and V. Esfahanian, “A review of battery electric vehicle technology and readiness levels,” Renewable Sustainable Energy Rev., vol. 78, pp. 414–430, 2017.
  40. S. Madichetty, S. Mishra, and M. Basu, “New trends in electric motors and selection for electric vehicle propulsion systems,” IET Electr. Syst. Transp., vol. 11, no. 3, pp. 186–199, 2021.
  41. E. Agamloh, A. Von Jouanne, and A. Yokochi, “An overview of electric machine trends in modern electric vehicles,” Mach., vol. 8, no. 2, p. 20, 2020.
  42. Z. Wang, T. W. Ching, S. Huang, H. Wang, and T. Xu, “Challenges faced by electric vehicle motors and their solutions,” IEEE Access, vol. 9, pp. 5228–5249, 2020.
  43. “1903 waverley model 20a,” 2023. (consulté le 15 aoùt 2023).
  44. “1914 detroit electric model 46,” 2023. (consulté le 15 aoùt 2023).
  45. “Altmob bmw 1602 electric.pdf. disponible sur:,” 2013. BMW 1602 Electric.pdf.
  46. A. W. E. Pyramid, “Altmob alterna- tive mobility! subpage,” 2013. BMW 325 Ele.
  47. Serg, “Sergs 1995 citroen ax electrique,” 2017. Minsk, Belarus Belarus.
  48. N. Sato, “Development trends and technological issues of rechargeable batteries for vehicle use,” ESPEC Technol. Rep., no. 76.
  49. “Ford ranger ev, wikipedia. 15 aout 2023. disponible sur:,” 2023. Ranger EV and ol- did=1170499925.
  50. “Honda insight, wikipedia. 23 juillet 2023. disponible sur:,” 2023. Insight and ol- did=1166796223.
  51. T. G. Habetler, F. Profumo, M. Pastorelli, and L. M. Tolbert, “Direct torque control of induction machines using space vector modulation,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1045–1053, 1992.
  52. W. Xie, X. Wang, F. Wang, W. Xu, R. M. Kennel, D. Gerling, and R. D. Lorenz, “Finite-control-set model predictive torque control with a deadbeat solution for pmsm drives,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5402–5410, 2015.
  53. K. Li and Y. Wang, “Maximum torque per ampere (mtpa) control for ipmsm drives based on a variable-equivalentparameter mtpa control law,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 7092–7102, 2018.
  54. H. Afsharirad, M. Sharifian, M. Sabahi, and S. Hosseini, “Field oriented control of dual mechanical port machine for hybrid electric vehicle,” J. Oper. Autom. Power Eng., vol. 6, no. 2, pp. 147–156, 2018.
  55. D. Evans, Z. Zhu, H. Zhan, Z. Wu, and X. Ge, “Fluxweakening control performance of partitioned stator-switched flux pm machines,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2350–2359, 2016.
  56. Y. Inoue, S. Morimoto, and M. Sanada, “Comparative study of pmsm drive systems based on current control and direct torque control in flux-weakening control region,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2382–2389, 2012.
  57. M. L. De Klerk and A. K. Saha, “A comprehensive review of advanced traction motor control techniques suitable for electric vehicle applications,” IEEE Access, vol. 9, pp. 125080–125108, 2021.
  58. C. Xia, S. Wang, Z. Wang, and T. Shi, “Direct torque control for vsi–pmsms using four-dimensional switching-table,” IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5774–5785, 2015.
  59. X. Wang, Z. Wang, and Z. Xu, “A hybrid direct torque control scheme for dual three-phase pmsm drives with improved operation performance,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1622–1634, 2018.
  60. Y. Ren and Z.-Q. Zhu, “Reduction of both harmonic current and torque ripple for dual three-phase permanent-magnet synchronous machine using modified switching-table-based direct torque control,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 6671–6683, 2015.
  61. M. Cheng, F. Yu, K. Chau, and W. Hua, “Dynamic performance evaluation of a nine-phase flux-switching permanent-magnet motor drive with model predictive control,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4539–4549, 2016.
  62. R. Antonello, M. Carraro, L. Peretti, and M. Zigliotto, “Hierarchical scaled-states direct predictive control of synchronous reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 5176–5185, 2016.
  63. C.-K. Lin, Y.-S. Lai, H.-C. Yu, et al., “Improved modelfree predictive current control for synchronous reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3942–3953, 2016.
  64. C. Martín, M. R. Arahal, F. Barrero, and M. J. Durán, “Five-phase induction motor rotor current observer for finite control set model predictive control of stator current,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4527–4538, 2016.
  65. X. Li and P. Shamsi, “Model predictive current control of switched reluctance motors with inductance auto-calibration,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3934–3941, 2015.
  66. T. Türker, U. Buyukkeles, and A. F. Bakan, “A robust predictive current controller for pmsm drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3906–3914, 2016.
  67. M. Bakiri, C. Guyeux, J.-F. Couchot, and A. K. Oudjida, “Survey on hardware implementation of random number generators on fpga: Theory and experimental analyses,” Comput. Sci. Rev., vol. 27, pp. 135–153, 2018.
  68. A. Podobas and S. Matsuoka, “Hardware implementation of posits and their application in fpgas,” in 2018 IEEE Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW), pp. 138–145, IEEE, 2018.
  69. A. Cozma and E. Cigan, “Fpga-based systems increase motor-control performance,” Analog Dialogue, vol. 49, no. 3, pp. 1–8, 2015.
  70. A. Gaga, O. Diouri, F. Errahimi, and N. Es-sbai, “Design and implementation of wireless zigbee sensor based on embedded 32-bits fpga processor,” Mediterr. Telecommun. J., vol. 5, no. 2, 2015.
  71. O. Diouri, A. Gaga, H. Ouanan, S. Senhaji, S. Faquir, and M. O. Jamil, “Comparison study of hardware architectures performance between fpga and dsp processors for implementing digital signal processing algorithms: Application of fir digital filter,” Results Eng., vol. 16, p. 100639, 2022.
  72. P. M. Deshmukh, S. Pathan, S. Chanvan, S. Tilekar, and B. Ladgaonkar, “Wireless sensor network for monitoring of air pollution near industrial sector,” Int. J. Adv. Res. Comput. Sci. Software Eng., vol. 6, no. 6, 2016.
  73. “39632e.pdf,” 2002.
  74. A. Gaga, H. Ouanan, Y. Mehdaoui, B. El Hadadi, et al., “low cost pid controller implementation of sepic converter using 8-bits microcontroller target for photovoltaic applications,” J. Electr. Syst., vol. 18, no. 2, 2022.
  75. S. Kuvelkar, O. Magar, A. Mohite, and V. Patil, “Tone generation using pic18f microcontroller,” 06 2019.
  76. N. Kumbhar and P. Mane-Deshmukh, “Designing and development of pic 18f4550 based wireless natural light intensity control system for polyhouse for agricultural applications,” J. Sci. Res. Sci. Eng. Technol., vol. 4, no. 1, pp. 1373–1377, 2018.
  77. M. Fallah, S. A. Davodi Navokh, and M. Mozaffari-Jovein, “Stm32 adc tutorial with application to real-time control,” 08 2021.
  78. T. Marciniak, K. Podbucki, and J. Suder, “Application of the nucleo stm32 module in teaching microprocessor techniques in automatic control,” Przegla˛d Elektrotechniczny, pp. 245–248, 2022.
  79. T. Long, “Design of sweeping robot based on stm32 single chip microcomputer,” in J. Phys. Conf. Ser., vol. 2456, p. 012045, IOP Publishing, 2023.
  80. W. Tang, “Design of intelligent bicycle status indication apparatus based on stm32 microcontroller,” Indones. J. Innovation Appl. Sci. (IJIAS), vol. 2, no. 1, pp. 43–49, 2022.
  81. W. He, “Design and implementation of stm32 based push box game,” Appl. Comput. Eng., vol. 6, pp. 580–586, 06 2023.
  82. W. He, “Tms320f28379s view:.” pdf/view/899872/TI1/.
  83. A. Raza, M. K. Azeem, M. S. Nazir, and I. Ahmad, “Robust nonlinear control of regenerative fuel cell, supercapacitor, battery and wind based direct current microgrid,” J. Energy Storage, vol. 64, p. 107158, 2023.
  84. A. Abbas, I. Ahmad, and S. Ahmed, “Barrier function-based adaptive terminal sliding mode control of plug-in hybrid electric vehicle with saturated control actions,” J. Energy Storage, vol. 65, p. 107254, 2023.
  85. P. H. A. Barra, V. Lacerda, R. Fernandes, and D. V. Coury, “A hardware-in-the-loop testbed for microgrid protection considering non-standard curves,” Electr. Power Syst. Res., vol. 196, p. 107242, 2021.