A Topology of Non-Isolated Soft Switched DC-DC Converter for Renewable Energy Applications

Document Type : Research paper

Authors

1 Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran.

2 Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.

Abstract

This research offers a high step-up DC-DC converter using a two- winding coupled inductor and voltage multiplier circuit (VMC) including diodes and capacitors for renewable energy (RE) usages such as photovoltaic (PV) and fuel cell (FC). The advantages of this converter are: 1) High voltage gain with small duty cycle of the switch, 2) low voltage stress across switch/diodes, 3) Low number of components, 4) Lower volume and cost, 5) simple structure with only one power switch, 6) small current ripple of the input, 7) zero voltage and current (ZVS and ZCS) of the diodes, 8) improved efficiency, and 9) common grounding of the input and output. Due to the coupled inductor usage, the voltage gain is more flexible, and it can be enhanced by adjusting two different parameters: the turns ratio (N) of the coupled inductor and the duty cycle (D) of the switch. Furthermore, the voltage stresses of the semiconductors are decreased by increasing N. VMC is the other element for the power switch’s voltage stress reduction. The suggested topology could be an appropriate option for RE usage because of the small current ripple of the input and modified efficiency.

Keywords

Main Subjects


  1. M. Kim and S. Choi, “A fully soft-switched single switch isolated dc–dc converter,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4883–4890, 2014.
  2. S. M. Hashemzadeh, S. H. Hosseini, E. Babaei, and M. Sabahi, “Design and modelling of a new three winding coupled inductor based high step-up dc–dc converter for renewable energy applications,” IET Power Electron., vol. 15, no. 13, pp. 1322–1339, 2022.
  3. S. M. Hashemzadeh, V. Marzang, S. Pourjafar, and S. H. Hosseini, “An ultra high step-up dual-input single-output dc–dc converter based on coupled inductor,” IEEE Trans. Ind. Electron., vol. 69, no. 11, pp. 11023–11034, 2021.
  4. S.-M. Chen, T.-J. Liang, L.-S. Yang, and J.-F. Chen, “A boost converter with capacitor multiplier and coupled inductor for ac module applications,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1503–1511, 2011.
  5. H. Shayeghi, S. Pourjafar, S. M. Hashemzadeh, and F. Blaabjerg, “A high efficiency soft-switched dc–dc converter with high voltage conversion ratio,” Int. J. Circuit Theory Appl., vol. 49, no. 2, pp. 244–266, 2021.
  6. K.-B. Park, G.-W. Moon, and M.-J. Youn, “Nonisolated high step-up boost converter integrated with sepic converter,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2266–2275, 2010.
  7. S.-M. Chen, M.-L. Lao, Y.-H. Hsieh, T.-J. Liang, and K.-H. Chen, “A novel switched-coupled-inductor dc–dc step-up converter and its derivatives,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 309–314, 2014.
  8. A. Samadian, S. M. Hashemzadeh, M. G. Marangalu, M. Maalandish, and S. H. Hosseini, “A new dual-input high step-up dc–dc converter with reduced switches stress and low input current ripple,” IET Power Electron., vol. 14, no. 9, pp. 1669–1683, 2021.
  9. A. Kumar and P. Sensarma, “Ripple-free input current high voltage gain dc–dc converters with coupled inductors,” IEEE Trans. Power Electron., vol. 34, no. 4, pp. 3418–3428, 2018.
  10. T.-J. Liang, J.-H. Lee, S.-M. Chen, J.-F. Chen, and L.-S. Yang, “Novel isolated high-step-up dc–dc converter with voltage lift,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1483–1491, 2011.
  11. F. Sadaghati, H. Shayeghi, S. Pourjafar, and S. Hashemzadeh, “A high step-up transformer-less dc-dc converter with continuous input current,” in 2020 11th Power Electron. Drive Syst. Technol. Conf. (PEDSTC), pp. 1–6, IEEE, 2020.
  12. H. Shayeghi, S. Pourjafar, and S. M. Hashemzadeh, “A switching capacitor based multi-port bidirectional dc–dc converter,” IET Power Electron., vol. 14, no. 9, pp. 1622– 1636, 2021.
  13. V. Marzang, S. M. Hashemzadeh, P. Alavi, A. KhoshkbarSadigh, S. H. Hosseini, and M. Z. Malik, “A modified triple-switch triple-mode high step-up dc–dc converter,” IEEE Trans. Ind. Electron., vol. 69, no. 8, pp. 8015–8027, 2021.
  14. S. M. Hashemzadeh, S. H. Hosseini, E. Babaei, and M. Sabahi, “Design and modelling of a new three winding coupled inductor based high step-up dc–dc converter for renewable energy applications,” IET Power Electron., vol. 15, no. 13, pp. 1322–1339, 2022.
  15. S. M. Hashemzadeh, E. Babaei, S. H. Hosseini, and M. Sabahi, “On this page,” Int. Trans. Electr. Energy Syst., vol. 2, p. 3, 2022.
  16. S. Hou, J. Chen, T. Sun, and X. Bi, “Multi-input step-up converters based on the switched-diode-capacitor voltage accumulator,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 381–393, 2015.
  17. G. Wu, X. Ruan, and Z. Ye, “Nonisolated high step-up dc–dc converters adopting switched-capacitor cell,” IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 383–393, 2014.
  18. H.-K. Liao, T.-J. Liang, L.-S. Yang, and J.-F. Chen, “Noninverting buck–boost converter with interleaved technique for fuel-cell system,” IET Power Electron., vol. 5, no. 8, pp. 1379–1388, 2012.
  19. K. Hwu and T. Peng, “A novel buck–boost converter combining ky and buck converters,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2236–2241, 2011.
  20. K.-I. Hwu and W.-Z. Jiang, “Analysis, design and derivation of a two-phase converter,” IET Power Electron., vol. 8, no. 10, pp. 1987–1995, 2015.
  21. M. A. Salvador, T. B. Lazzarin, and R. F. Coelho, “High stepup dc–dc converter with active switched-inductor and passive switched-capacitor networks,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5644–5654, 2017.
  22. J. C. Rosas-Caro, J. E. Valdez-Resendiz, J. C. MayoMaldonado, A. Alejo-Reyes, and A. Valderrabano-Gonzalez, “Quadratic buck–boost converter with positive output voltage and minimum ripple point design,” IET Power Electron., vol. 11, no. 7, pp. 1306–1313, 2018.
  23. M. Maalandish, E. Babaei, P. Abolhasani, M. Gheisarnejad, and M.-H. Khooban, “Ultra high step-up soft-switching dc/dc converter using coupled inductor and interleaved technique,” IET Power Electron., 2023.
  24. H. Shayeghi, S. Pourjafar, S. Hashemzadeh, and F. Sedaghati, “A dc-dc converter with high voltage conversion ratio recommended for renewable energy application,” J. Oper. Autom. Power Eng., vol. 12, no. 3, pp. 186–194, 2024.
  25. A. Yaqoub Hamza and F. Jumaa, “A new transformerless dc-dc converter for renewable energy applications,” J. Oper. Autom. Power Eng., vol. 12, no. 1, pp. 35–41, 2024.
  26. R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. Springer Science & Business Media, 2007.
  27. M. B. Meier, S. A. da Silva, A. A. Badin, E. F. R. Romaneli, and R. Gules, “Soft-switching high static gain dc–dc converter without auxiliary switches,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2335–2345, 2017.
  28. Y. Tang, D. Fu, J. Kan, and T. Wang, “Dual switches dc/dc converter with three-winding-coupled inductor and charge pump,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 461–469, 2015.
  29. M. Heidari, H. Farzanehfard, and M. Esteki, “A single-switch single-magnetic core high conversion ratio converter with low input current ripple and wide soft-switching range for photovoltaic applications,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7226–7234, 2019.
  30. F. Sedaghati and S. Pourjafar, “Analysis and implementation of a boost dc–dc converter with high voltage gain and continuous input current,” IET Power Electron., vol. 13, no. 4, pp. 798–807, 2020.

Articles in Press, Corrected Proof
Available Online from 12 May 2024
  • Receive Date: 02 August 2023
  • Revise Date: 12 October 2023
  • Accept Date: 02 November 2023
  • First Publish Date: 12 May 2024