Innovative Z-Source High Gain Step-up DC-DC Converter Integrated with Built-in Transformer

Document Type : Research paper

Authors

1 Department of Electrical and Computer Engineering, Qom University of Technology, Qom, Iran.

2 Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.

Abstract

The increasing deployment of photovoltaic (PV) panels has raised the need for efficient voltage-boosting solutions to overcome low output voltages. Conventional DC-DC boost converters face high conduction losses and voltage stress on components. This paper proposes a new topology for a Z-source converter that integrates the switched inductor technique by using Built-in-Transformer. Various voltage-boosting methods have been explored. However, existing solutions suffer from limitations in voltage gain, voltage stresses, duty cycle range, and the number of components. The proposed topology combines the advantages of the Z-Source converter, switched capacitor technique, and switched inductor technique, to address these limitations. The paper presents the circuit configuration, operating modes, steady-state analysis, design considerations, efficiency analysis, small signal analysis, and simulation of the proposed converter. The new topology significantly improves active component count, device voltage stress, and voltage gain control, making it a promising solution for efficient voltage boosting in PV applications. Finally, to validate the performance of the proposed converter, a 150W prototype is presented.

Keywords

Main Subjects


  1. K. Alluhaybi, I. Batarseh, and H. Hu, “Comprehensive review and comparison of single-phase grid-tied photovoltaic microinverters,” IEEE J. Emerging Sel. Top. Power Electron., vol. 8, no. 2, pp. 1310–1329, 2019.
  2. G. Palumbo and D. Pappalardo, “Charge pump circuits: An overview on design strategies and topologies,” IEEE Circuits Syst. Mag., vol. 10, no. 1, pp. 31–45, 2010.
  3. R. Beiranvand, “Regulating the output voltage of the resonant switched-capacitor converters below their resonant frequencies,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5236–5249, 2017.
  4. G. Tan, J. Wang, and Y. Ji, “Soft-switching flyback inverter with enhanced power decoupling for photovoltaic applications,” IET Electr. Power Appl., vol. 1, no. 2, pp. 264–274, 2007.
  5. K. Yari, H. Mojallali, and S. H. Shahalami, “A new coupled-inductor-based buck–boost dc–dc converter for pv applications,” IEEE Trans. Power Electron., vol. 37, no. 1, pp. 687–699, 2021.
  6. B. Allahverdinejad, S. A. Modaberi, and A. Ajami, “A non-isolated buck-boost dc–dc converter with continuous input current and wide conversion ratio range for photovoltaic applications,” in 2022 13th Power Electron. Drive Syst. Technol. Conf., pp. 491–497, IEEE, 2022.
  7. S. Habibi, R. Rahimi, M. Ferdowsi, and P. Shamsi, “Coupled inductor-based single-switch quadratic high step-up dc–dc converters with reduced voltage stress on switch,” IEEE J. Emerging Sel. Top. Ind. Electron., vol. 4, no. 2, pp. 434–446, 2022.
  8. J. Ai, M. Lin, and M. Yin, “A family of high step-up cascade dc–dc converters with clamped circuits,” IEEE Trans. Power Electron., vol. 35, no. 5, pp. 4819–4834, 2019.
  9. F. Z. Peng, “Z-source inverter,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 504–510, 2003.
  10. Y. P. Siwakoti, F. Z. Peng, F. Blaabjerg, P. C. Loh, and G. E. Town, “Impedance-source networks for electric power conversion part i: A topological review,” IEEE Trans. power Electron., vol. 30, no. 2, pp. 699–716, 2014.
  11. B. Zhao, Q. Yu, Z. Leng, and X. Chen, “Switched z-source isolated bidirectional dc–dc converter and its phase-shifting shoot-through bivariate coordinated control strategy,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4657–4670, 2011.
  12. M. Zhu, K. Yu, and F. L. Luo, “Switched inductor z-source inverter,” IEEE Trans. Power Electron., vol. 25, no. 8, pp. 2150–2158, 2010.
  13. H. Shen, B. Zhang, D. Qiu, and L. Zhou, “A common grounded z-source dc–dc converter with high voltage gain,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2925–2935, 2016.
  14. A. Chub, O. Husev, D. Vinnikov, and F. Blaabjerg, “Novel family of quasi-z-source dc/dc converters derived from current-fed push-pull converters,” in 2014 16th Eur. Conf. Power Electron. Appl., pp. 1–10, IEEE, 2014.
  15. M. Veerachary and P. Kumar, “Analysis and design of sixth order quasi-z-source dc-dc boost converter,” in 2019 IEEE Int. Conf. Sustainable Energy Technol. Syst., pp. 347–352, IEEE, 2019.
  16. Y. Zhang, J. Shi, L. Zhou, J. Li, M. Sumner, P. Wang, and C. Xia, “Wide input-voltage range boost three-level dc–dc converter with quasi-z source for fuel cell vehicles,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6728–6738, 2016.
  17. H. Shen, B. Zhang, and D. Qiu, “Hybrid z-source boost dc–dc converters,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 310–319, 2016.
  18. T. Takiguchi and H. Koizumi, “Quasi-z-source dc-dc converter with voltage-lift technique,” in IECON 2013-39th Annu. Conf. IEEE Ind. Electron. Soc., pp. 1191–1196, IEEE, 2013.
  19. M. M. Haji-Esmaeili, E. Babaei, and M. Sabahi, “High step-up quasi-z source dc–dc converter,” IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10563–10571, 2018.
  20. Y. Wang, Q. Bian, X. Hu, Y. Guan, and D. Xu, “A high-performance impedance-source converter with switched inductor,” IEEE Trans. Power Electron., vol. 34, no. 4,
    pp. 3384–3396, 2018.
  21. A. Nafari and R. Beiranvand, “An extendable interleaved quasi z-source high step-up dc–dc converter,” IEEE Trans. Power Electron., vol. 38, no. 4, pp. 5065–5076, 2023.
  22. R. Rahimi, S. Habibi, M. Ferdowsi, and P. Shamsi, “Zsource-based high step-up dc–dc converters for photovoltaic applications,” IEEE J. Emerging Sel. Top. Power Electron., vol. 10, no. 4, pp. 4783–4796, 2021.
  23. A. Samadian, S. H. Hosseini, and M. Sabahi, “A new three-winding coupled inductor nonisolated quasi-z-source high step-up dc–dc converter,” IEEE Trans. Power Electron., vol. 36, no. 10, pp. 11523–11531, 2021.
  24. A. Samadian, S. H. Hosseini, M. Sabahi, and M. Maalandish, “A new coupled inductor nonisolated high step-up quasi zsource dc–dc converter,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5389–5397, 2019.
  25. N. Yang, J. Zeng, R. Hu, and J. Liu, “Novel non-isolated high step-up converter with fewer passive devices and low voltage stress of power switches,” IET Power Electron., vol. 13, no. 11, pp. 2302–2311, 2020.
  26. G. Zhang, Z. Wu, S. Y. Shenglong, H. Trinh, and Y. Zhang, “Four novel embedded z-source dc–dc converters,” IEEE Trans. Power Electron., vol. 37, no. 1, pp. 607–616, 2021.
  27. S. Rostami, V. Abbasi, and T. Kerekes, “Switched capacitor based z-source dc–dc converter,” IET Power Electron., vol. 12, no. 13, pp. 3582–3589, 2019.
  28. V. F. Pires, A. Cordeiro, D. Foito, and J. F. Silva, “A dc-dc converter with capability to support the voltage balance of dc bipolar microgrids,” in 2022 11th Int. Conf. Renewable Energy Res. Appl., pp. 50–55, IEEE, 2022.
  29. S. Hasanpour and T. Nouri, “New coupled-inductor high-gain dc/dc converter with bipolar outputs,” IEEE Trans. Ind. Electr., vol. 71, no. 3, pp. 2601–2613, 2023.
  30. T. Yao, Y. Cheng, Y. Guan, W. Wang, Y. Wang, and D. Xu, “A family of high step-up dc-dc converters based on enhanced boost cells with coupled inductor,” IEEE Trans. Power Electron., 2023.
  31. M. Yang, Y. Weng, H. Li, J. Lin, X. Yan, and T. Jin, “A novel three-winding coupled inductor-based high gain dc-dc converter with low switch stress and continuous input current,” IEEE Trans. Power Electron., 2023.
  32. E. Naderi, S. Seyedshenava, and H. Shayeghi, “High gain dc/dc converter implemented with mppt algorithm for dc microgrid system,” J. Oper. Autom. Power Eng., vol. 11, no. 3, pp. 213–222, 2023.
  33. H. Shayeghi, S. Pourjafar, S. Hashemzadeh, and F. Sedaghati, “A dc-dc converter with high voltage conversion ratio recommended for renewable energy application,” J. Oper. Autom. Power Eng., vol. 12, no. 3, pp. 186–194, 2024.
  34. S. M. Salehi, S. M. Dehghan, and S. Hasanzadeh, “Interleaved-input series-output ultra-high voltage gain dc–dc converter,” IEEE Trans. Power Electron., vol. 34, no. 4, pp. 3397–3406, 2018.

Articles in Press, Corrected Proof
Available Online from 23 November 2024
  • Receive Date: 03 September 2023
  • Revise Date: 05 March 2024
  • Accept Date: 18 June 2024
  • First Publish Date: 23 November 2024