Enhanced Stability in Microgrids Using an Optimized Virtual Synchronous Generator Control for Voltage Source Converters

Document Type : Research paper

Authors

Department of Electrical Engineering, Razi University, Kermanshah, Iran.

10.22098/joape.2025.18690.2454

Abstract

This study introduces a Virtual Dynamic Emulation–Virtual Synchronous Generator (VDE–VSG) control strategy for converter-dominated microgrids, explicitly linking DC-side energy dynamics with AC-side inertial behavior. The proposed framework integrates photovoltaic (PV) generation, bidirectional battery storage, and a three-phase voltage-source converter, in which the DC-link voltage informs the virtual inertia and damping response. A systematic analysis of the synthetic inertia (J) and damping (D) parameters highlights their critical role in balancing transient speed and oscillation suppression. To achieve optimal performance, Particle Swarm Optimization (PSO) is applied offline to identify the J–D pair that minimizes frequency deviations under varying load and fault conditions. Simulation results demonstrate that the PSO-optimized VDE–VSG substantially outperforms both conventional dual-loop control and baseline VSG schemes. Under step load disturbances, the optimized controller reduces maximum frequency deviation by 62% and accelerates active power settling by 57%. During DC-side short-circuit faults, DC-link voltage depression decreases from 43% to 17%, while recovery time is shortened by 93%. These findings underscore the physical coherence of DC-aware virtual inertia and damping, confirming that coordinated tuning via PSO enhances stability, transient response, and robustness in microgrid operation. The study presents a reproducible methodology and validates the practical feasibility of implementing the VDE–VSG on contemporary real-time platforms.

Keywords

Main Subjects


  1. X. Wang, X. Zhang, F. Zhou, X. Xu, A. Chammam, and A. Ali, “Modeling smart electrical microgrid with demand response and storage systems for optimal operation in critical conditions,” Sci. Technol. Energy Trans., vol. 79, p. 55, 2024.
  2. V. Agarwal, “DC-AC converters (inverters),” Encyclopedia Electr. Electron. Power Eng. (J. García, ed.), pp. 107–118, Oxford: Elsevier, 2023.
  3. P. Hu, W. Jiang, Y. Yu, D. Jiang, and J. M. Guerrero, “Transient stability improvement of grid-forming voltage source converters considering current limitation,” Sustainable Energy Technol. Assess., vol. 53, p. 102883, 2022.
  4. A. Younesi, H. Shayeghi, and P. Siano, “Assessing the use of reinforcement learning for integrated voltage/frequency control in ac microgrids,” Energies, vol. 13, no. 5, p. 1250, 2020.
  5. H. Shayeghi and A. Younesi, “Mini/micro-grid adaptive voltage and frequency stability enhancement,” J. Oper. Autom. Power Eng., vol. 7, no. 1, pp. 107–118, 2019.
  6. S. Abareshi, S. Tohidi, M. B. Bannae Sharifian, and A. Younesi, “Model predictive control by combining vectors for surface and interior permanent-magnet synchronous motor,” Int. Trans. Electr. Energy Syst., vol. 31, no. 8, p. e12959, 2021.
  7. H. O. Shami, A. Basem, A. H. Al-Rubaye, and K. Sabzevari, “A novel strategy to enhance power management in AC/DC hybrid microgrid using virtual synchronous generator based interlinking converters integrated with energy storage system,” Energy Reports, vol. 12, pp. 75–94, 2024.
  8. M. Jabari, M. Ghoreishi, T. Bragatto, F. Santori, M. Cresta, A. Geri, and M. Maccioni, “Advancing hybrid AC/DC microgrid converters: Modeling, control strategies, and fault behavior analysis,” Energies, vol. 18, no. 23, p. 6302, 2025.
  9. A. Zerka, M. Ouassaid, and M. Maaroufi, “Strategic participation of electric vehicles in vehicle-to-grid within a microgrid system: A decentralized optimization approach,” Res. Eng., vol. 24, p. 103144, 2024.
  10. Y. Akil, A. R. Boynuegri, and M. Yilmaz, “Robust detection of microgrid islanding events under diverse operating conditions using rvfln,” Energies, vol. 18, no. 17, p. 4470, 2025.
  11. H. S. Salama, A. Bakeer, G. Magdy, and I. Vokony, “Virtual inertia emulation through virtual synchronous generator based superconducting magnetic energy storage in modern power system,” J. Energy Storage, vol. 44, p. 103466, 2021.
  12. C. Qin, J. Zhang, S. Pang, and L. Ma, “A novel event-triggered secondary control strategy for microgrid considering timevarying delay,” Int. J. Electr. Power Energy Syst., vol. 162, p. 110255, 2024.
  13. F. A. González, J. Posada, B. W. França, and J. C. RosasCaro, “Inertia in converter-dominated microgrids: Control strategies and estimation techniques,” Electr., vol. 6, no. 4, p. 58, 2025.
  14. Q.-M. Hoang, G. V. Hollweg, A. Hussain, S. Zarrabian, W. Su, and V.-H. Bui, “Pso-based sliding mode current control of grid-forming inverter in rotating frame,” arXiv preprint arXiv:2501.11633, 2025.
  15. M. Haddadi, S. A. Gorji, and S. Y. Samson, “An overview of inertia emulation strategies for DC microgrids: Stability analysis and ac microgrid analogies,” IEEE Open J. Ind. Electron. Soc., vol. 6, pp. 491–521, 2025.
  16. A. B. Akinwola and A. Alkuhayli, “Hybrid pso–reinforcement learning-based adaptive virtual inertia control for frequency stability in multi-microgrid PV systems,” Electron., vol. 14, no. 17, p. 3349, 2025.
  17. M. Cheng, W. Yan, D. Zhang, X. Liu, L. He, M. Xu, and Q. Yao, “Frequency stability of new energy power systems based on VSG adaptive energy storage coordinated control strategy,” Energy Inf., vol. 7, no. 1, p. 54, 2024.
  18. A. Bakeer, A. Chub, A. Abid, S. A. Zaid, T. A. Alghamdi, and H. S. Salama, “Enhancing grid-forming converters control in hybrid AC/DC microgrids using bidirectional virtual inertia support,” Proc., vol. 12, no. 1, p. 139, 2024.
  19. M. H. Mousavi and H. Moradi, “Simultaneous compensation of distorted DC bus and AC side voltage using enhanced virtual synchronous generator in islanded DC microgrid,” Int. J. Electron., vol. 112, no. 1, pp. 151–176, 2025.
  20. P. K. Kesavan, U. Subramaniam, D. J. Almakhles, and S. Selvam, “Modelling and coordinated control of grid connected photovoltaic, wind turbine driven PMSG, and energy storage device for a hybrid DC/AC microgrid,” Prot. Control Modern Power Syst., vol. 9, no. 1, pp. 154–167, 2024.
  21. A. Bakeer, A. Chub, A. Abid, S. A. Zaid, T. A. Alghamdi, and H. S. Salama, “Enhancing grid-forming converters control in hybrid AC/DC microgrids using bidirectional virtual inertia support,” Proc., vol. 12, no. 1, p. 139, 2024.
  22. S. Ashrafi, S. A. Mousavi-Rozveh, A. Khorsandi, and S. H. Hosseinian, “Control strategy of frequency and DC voltage for interfacing converter of hybrid AC/DC microgrid based on improved virtual synchronous generator,” IET Renewable Power Gener., vol. 19, no. 1, p. e13190, 2025.
  23. A. Azamian, B. Rezaeealam, T. Ghanbarih, and E. Rokrok, “Low voltage ride-through improvement of a two-stage grid-connected photovoltaic system by using an optimized SPWM technique,” J. Oper. Autom. Power Eng., vol. 14, no. 1, pp. 60–69, 2026.
  24. M. K. Rajak and R. Pudur, “Model predictive control–based virtual synchronous generator for enhanced grid integration under weak grid conditions using adaptive dynamic approach,” COMPEL Int. J. Comput. Math. Electr. Electron. Eng., vol. ahead-of-print, no. ahead-of-print, pp. 1–25, 2025.
  25. D. Vimala, N. K. Vemula, B. Lokeshgupta, R. Devarapalli, and Ł. Knypinski, “Hybrid finite control set model predictive´ control and universal droop control for enhanced power sharing in inverter-based microgrids,” Energies, vol. 18, no. 19, p. 5200, 2025.
  26. Z. Zhao, Z. Zhang, Y. Wang, C. Liu, C. Peng, and L. L. Lai, “Decentralized grid-forming control strategy for PV-based DC microgrids using finite control set model predictive control,” IEEE Trans. Smart Grid, vol. 15, no. 6, pp. 5269–5283, 2024.
  27. M. K. Rajak and R. Pudur, “Deep reinforcement learning framework for adaptive power control in grid-forming inverters: A multi-objective optimization approach,” J. Renewable Sustainable Energy, vol. 17, no. 2, 2025.
  28. F.-R. Qu, Z.-W. Liu, X.-K. Liu, Y.-W. Wang, and E.-G. Tian, “Memory-based event-triggered control for distributed secondary control in DC microgrids with quantized communication,” IEEE Trans. Ind. Electron., vol. 71, no. 11, pp. 14864–14874, 2024.
  29. J. Wang, N. Ramli, N. B. M. Shariff, N. H. A. Aziz, and S. Huo, “Optimization of adaptive virtual inertia method for VSG in renewable energy grid-connected mode,” in 2023 5th Int. Academ. Exchange Conf. Sci. Technol. Innov., pp. 1636–1641, IEEE, 2023.
  30. N. A. Ghazzawi, M. Omar, and M. Mahmoud, “Control approach for photovoltaic inverters enhancing the primary grid using the virtual synchronous generator concept,” AnNajah Uni. J. Res.-A (Nat. Sci.), vol. 38, no. 1, pp. 60–66, 2023.
  31. H. Wang, J. Fang, Y. Tian, K. Yin, Z. Shen, Q. Wang, and Q. Ren, “A grid-tied virtual synchronous generator transient suppression method based on derivatives-enhanced power feedback,” in 2023 2nd Int. Conf. Power Syst. Electr. Technol., pp. 85–90, IEEE, 2023.
  32. P. K. Nirala, R. Bhushan, and K. M. Jagtap, “Impact of grid-side converter filter on the small-signal stability of a grid-connected dfig-based wind-driven system,” Int. J. Circuit Theory Appl., vol. 53, no. Issue 11, pp. 6621–6637, 2025.
  33. P. He, Z. Li, H. Jin, C. Zhao, J. Fan, and X. Wu, “An adaptive VSG control strategy of battery energy storage system for power system frequency stability enhancement,” Int. J. Electr. Power Energy Syst., vol. 149, p. 109039, 2023.
  34. G. Li, B. Liu, W. Song, C. Jining, and X. Liu, “An enhancing stability control strategy of VSG-based power source under PWM rectifier load,” IEEE Trans. Consumer Electron., vol. 71, no. Issue 1, pp. 808–818, 2025.
  35. M. A. E. Mohamed, A. M. Mahmoud, E. M. M. Saied, and H. A. Hadi, “Hybrid Cheetah particle swarm optimization based optimal hierarchical control of multiple microgrids,” Sci. Reports, vol. 14, no. 1, p. 9313, 2024.
  36. C. Li, Y. Yang, Y. Cao, A. Aleshina, J. Xu, and F. Blaabjerg, “Grid inertia and damping support enabled by proposed virtual inductance control for grid-forming virtual synchronous generator,” IEEE Trans. Power Electron., vol. 38, no. 1, pp. 294–303, 2022.
Volume 13, Special Issue
Intelligent and Sustainable Power Systems (ISPS): AI-Driven Innovations for Renewable Integration and Smart Grid Resilience
2025
Pages 1-16
  • Receive Date: 28 October 2025
  • Revise Date: 22 December 2025
  • Accept Date: 22 December 2025
  • First Publish Date: 22 December 2025