Two-Stage Inverter Based on Combination of High Gain DC-DC Converter and Five-Level Inverter for PV-Battery Energy Conversion

Document Type : Research paper


1 دانشجو

2 عضو هیات علمی دانشگاه شهید مدنی آذربایجان

3 استاد دانشگاه شهید مدنی آذربایجان


This paper proposes a new two-stage inverter based on transformer-less high gain DC-DC converter for energy conversion of a photovoltaic system. The designed system consists of a high gain DC-DC converter cascaded with a three-phase inverter. The proposed DC-DC converter has a simple structure, and it has one switch in its structure. The output voltage of the DC-DC converter supplies DC source for the inverter part of the multi-stage inverter. The advanced two-stage inverter sample was fabricated, then the findings of the acquired simulation and hardware warranted the configuration applicability. Finally, the MATLAB/SIMULINK is employed for the simulation of PV-battery system. The obtained results revel that the proposed power conversion system effectively chases the load and generation fluctuations and also properly handles the power mismatches in PV-battery system. 


Main Subjects

[1]     A. H. Einaddin, A. S. Yazdankhah, R. Kazemzadeh, “Power management in a utility connected micro-grid with multiple renewable energy sources,” J. Oper. Autom. Power Eng., vol. 5, no. 1, pp.1-9, 2017.
[2]     K. Afshar, A. Shokri Gazafroudi, Application of stochastic programming to determine operating reserves with considering wind and load uncertainties,” J. Oper. Aut. Power Eng., vol. 1, no. 2, 96-109, 2013.
[3]     B. S. Prasad, S. Jain, V. Agarwal, “Universal single-stage grid-connected inverter”, IEEE Trans. Energy Convers., vol. 23, no. 1, 128-137, 2008.
[4]     E. Salary, M. R. Banaei, A. Ajami, “Multi-stage DC-AC converter based on new DC- DC converter for energy conversion,” J. Oper. Autom. Power Eng., vol. 4, no. 1, pp. 42-53, 2016.
[5]     J. M. Shen, H. L. Jou, J. C. Wu, “Novel transformer less grid-connected power converter with negative grounding for photovoltaic generation system,” IEEE Trans. Power Electron., vol. 27, pp.1818-1829, 2012.
[6]     X. Xiong, J. Ouyang, Modeling and transient behavior analysis of an inverter-based microgrid,” Electr. Power Company Syst., vol. 40, pp.112-130, 2012.
[7]     M. Sarhangzadeh, S. H. Hosseini, M. B. Bannan Sharifian, G. B. Gharehpetian, “Multi input direct DC–AC converter with high-frequency link for clean power-generation systems,” IEEE Trans. Power Electron., vol. 26, no. 6, 1777-1789, 2011.
[8]     R. Bojoi, M. Cerchio, G. Gianolio, F. Profumo, A. Tencon I, “Fuel cells for electric power generation: peculiarities and dedicated solutions for power electronic conditioning systems,” EPE J., vol. 16, no. 1, pp. 44-45, 2006.
[9]     L.S. Yang, T.J. Liang and J.F. Chen, “Transformerless DC-DC converters with high step up voltage gain,” IEEE Trans. Ind. Electron., vol. 56, no.8, pp. 3144-3152, 2009.
[10]  L. H. S. C. Barreto, P. P Praca, D. S. Oliveira, R. P. T. Bascope, “Single-stages topologies integrating battery charging, high voltage step-up and photovoltaic energy extraction capabilities,” IET Electron. Lett., vol. 47, no. 1, pp. 49-50, 2011.
[11]  Z. Zhao, M. Xu, Q. Chen, J. Lai, Y. Cho, “Derivation, analysis, and implementation of a boost-buck converter-based high-efficiency PV Inverter,” IEEE Trans. Power Electron., vol. 27, pp. 1304-1313, 2012.
[12]  L. G. Junior, M. A. G. de Brito, L. P. Sampaio, C. A. Canesin, “Single stage converters for low power stand-alone and grid-connected PV systems,” Proc. IEEE Int. Symp. Ind. Electron., pp.1112-1117, 2011.
[13]  J. C. Rosas-Caro, J. M. Ramirez, F. Z. Peng, A. Valderrabano, “A DC/DC multilevel boost converter,” IET Proc. Power Electron., vol.3, pp.129-137, 2010.
[14]  M. R. Banaei, E. Salary, “Two flying capacitors cascaded sub-multilevel inverter with five Switches for DC/AC conversion”, GU J. Sci., vol. 25. no. 4, pp. 875-886, 2012.
[15]  P. Thounthong, A. Luksanasakul, P. Koseeyaporn, B. Davis, “Intelligent model-based control of a standalone photovoltaic-fuel cell power plant with super capacitor energy storage,” IEEE Trans. Sustain. Energy, vol. 4. no. 1, pp. 240-249, 2013.
[16]  J. A. P. Lopes. C. L. Moreira and A. G Madureira, “Defining control strategies for microgrids islanded operation,” IEEE Trans. Power syst., vol. 21, no. 2, pp. 916-924, 2006.
[17]  B. Sri Revathi, M. Prabhakar, “ Non isolated high gain DC-DC converter topologies for PV applications - A comprehensive,” Renewable Sustainable Energy Rev., vol. 66, pp. 920-933, 2016.
[18]  L. Maharjan, S. Inoue, and H. Akagi, “A transformerless energy storage system based on a cascade multilevel PWM converter with star configuration,” IEEE Trans. Ind. Electron., vol. 44, pp. 1621-1630, 2008,
[19]  D. Ali and D. D. Aklil-D’Halluin, “Modeling a proton exchange membrane (PEM) fuel cell system as a hybrid power supply for standalone applications,” Proc. Asia-Pac. Power Energy Eng. Conf., pp. 1-5, 2011.
[20]  A. Tofighi and M. Kalantar, “Adaptive passivity-based control of PEM fuel cell/battery hybrid power source for stand-alone applications,” Adv. Electr. Comp. Eng., vol.10, no. 4, pp. 111-120, 2010.
[21]  P. Palanivel and S. S. Dash, “Analysis of THD and output voltage performance for cascaded multilevel inverter using carrier pulse width modulation techniques,” IET Power Electron., vol. 4, no. 8, pp. 951-958, 2011.
[22]  S. Laali, E. Babaei and M.B.B. Sharifian, “Reduction the number of power electronic devices of a cascaded multilevel inverter based on new general topology,” J. Oper. Autom. Power Eng., vol. 2, no. 2, pp. 81-90, 2014.
[23]  M. T. Hough and H. Taghizadeh, “Harmonic elimination of cascade multilevel inverters with non-equal dc sources using particle swarm optimization,” IEEE Trans. Ind. Electron., vol. 57, no.11, pp. 3678-3684, 2010.
[24]  A. Kavousi, B. Vahidi, R. Salehi, M. K. Bakhshizadeh, N. Farokhnia, and S. H. Fathi, “Application of the bee algorithm for selective harmonic elimination strategy in multilevel inverters,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1689-1696, 2012.
[25]  Kh. El-Naggar, T. H. Abdelhamid, “Selective harmonic elimination of new family of multilevel inverters using genetic algorithms,” Energy Convers. Manag., vol. 49, pp. 89-95, 2008.
[26]  W. Chaa, J. Kwonb, B. Kwon, “ Highly efficient step-up dc–dc converter for photovoltaic micro-inverter,” Solar Energy, vol.135, pp. 14-21, 2016.
[27]  M. Muthuselvi, K. Antony Samson, “Design and Analysis of PEM Fuel Cell with Multilevel Inverter Using Multicarrier PWM Techniques,” Artif. Intell.  Evol. Comput. Eng. Syst., Vol. 394, pp. 1239-1252, 2016.
[28]  J. H. Kim, Y. C. Jung, S. W. Lee, T. W. Leez, Ch. Y. Won, “Power loss analysis of interleaved soft switching boost converter for single-phase PV-PCS,” J. Power Electron., vol.10, no. 4, pp. 335-341, 2010.
[29]  E. Babaei, S.H. Hosseini, “New cascaded multilevel inverter topology with a minimum number of switches,” Energy Convers. Manag., vol.50, pp. 2761-2767, 2009.
[30]  A. Mahrous El-Sayed, M. Orabi, and O. M. AbdelRahim, “Two-stage micro-grid inverter with high-voltage gain for photovoltaic applications,” IET Power Electron., vol. 6, no. 9, pp. 1812-1821, 2013.
[31]  M. Allahnoori, Sh. Kazemi, H. Abdi and R. Keyhani, “Reliability assessment of distribution systems in presence of microgrids considering uncertainty in generation and load demand,” J. Oper. Autom. Power Eng., vol. 2, no. 2, pp. 113- 120, 2014.
[32]  E. Salary, M. R. Banaei, A. Ajami, “Design of novel step-up boost DC/DC converter,” Iran J. Sci. Technol. Trans. Electr. Eng., vol. 41, pp.13-22, 2017.