[1] M. S. Eide,. Endresen, R. Skjong, T. Longva, and S. Alvik, “Cost-effectiveness assessment of CO2 reducing measures in shipping,” Marit. Policy Manage., vol. 36, pp. 367-384, 2009.
[2] N. Rehmatulla and T. Smith, “Barriers to energy efficiency in shipping: A triangulated approach to investigate the principal agent problem,” Energy Policy, vol. 84, pp. 44-57, 2015.
[3] Buhaug, J. Corbett, Endresen, V. Eyring, J. Faber, S. Hanayama, et al., “Second IMO GHG Study," Int. Marit. Organiz. (IMO), London, UK, vol. 24, 2009.
[4] A. Malheiro, P. M. Castro, R. M. Lima, and A. Estanqueiro, “Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems,” Renew. Energy, vol. 83, pp. 646-657, 2015.
[5] R. Hunter and G. Elliot, Wind-diesel systems: a guide to the Tech. Implementation Cambridge University Press, 1994.
[6] F. Birol, “World energy outlook 2010,” Int. Energy Agency, vol. 1, 2010.
[7] C. Yan, G. K. Venayagamoorthy, and K. A. Corzine, “Optimal location and sizing of energy storage modules for a smart electric ship power system, ” Proce. IEEE Symp. Compu. Intell. Appl. Smart Grid, 2011, pp. 1-8.
[8] B. Zahedi, L. E. Norum, and K. B. Ludvigsen, “Optimized efficiency of all-electric ships by dc hybrid power systems,” J. Power Sources, vol. 255, pp. 341-354, 2014.
[9] E. Ovrum and T. Bergh, “Modelling lithium-ion battery hybrid ship crane operation,” Appl. Energy, vol. 152, pp. 162-172, 2015.
[10] E. K. Dedes, D. A. Hudson, and S. R. Turnock, “Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping,” Energy Policy, vol. 40, pp. 204-218, 2012.
[11] M. Majidi and S. Nojavan, “Optimal sizing of energy storage system in a renewable-based microgrid under flexible demand side management considering reliability and uncertainties,” J. Oper. Autom. Power Eng., vol. 5, pp. 205-214, 2017.
[12] R. Afshan and J. Salehi, “Optimal scheduling of battery energy storage system in distribution network considering uncertainties using hybrid monte carlo-genetic approach,” J. Oper. Autom. Power Eng., vol. 6, pp. 1-12, 2018.
[13] S. Wen, H. Lan, Y.-Y. Hong, C. Y. David, L. Zhang, and P. Cheng, “Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system,” Appl. Energy, vol. 175, pp. 158-167, 2016.
[14] L. Wang, D.-J. Lee, W.-J. Lee, and Z. Chen, “Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link,” J. Power Sources, vol. 185, pp. 1284-1292, 2008.
[15] A. De and L. Musgrove, “The optimization of hybrid energy conversion systems using the dynamic programming model—Rapsody,” Int. J. Energy Res., vol. 12, pp. 447-457, 1988.
[16] C. D. Barley and C. B. Winn, “Optimal dispatch strategy in remote hybrid power systems,” Solar Energy, vol. 58, pp. 165-179, 1996.
[17] S. Ashok, “Optimised model for community-based hybrid energy system,” Renew. Energy, vol. 32, pp. 1155-1164, 2007.
[18] R. Dufo-López and J. L. Bernal-Agustín, “Multi-objective design of PV–wind–diesel–hydrogen–battery systems,” Renew. Energy, vol. 33, pp. 2559-2572, 2008.
[19] Z. Zhou, J. Zhang, P. Liu, Z. Li, M. C. Georgiadis, and E. N. Pistikopoulos, “A two-stage stochastic programming model for the optimal design of distributed energy systems,” Appl. Energy, vol. 103, pp. 135-144, 2013.
[20] A. Arabali, M. Ghofrani, M. Etezadi-Amoli, and M. S. Fadali, “Stochastic performance assessment and sizing for a hybrid power system of solar/wind/energy storage,” IEEE Trans. Sustain. Energy, vol. 5, pp. 363-371, 2014.
[21] M. Alipour, B. Mohammadi-Ivatloo, and K. Zare, “Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs,” Appl. Energy, vol. 136, pp. 393-404, 2014.
[22] E. Vanem and E. M. Bitner-Gregersen, “Stochastic modelling of long-term trends in the wave climate and its potential impact on ship structural loads,” Appl. Ocean Res., vol. 37, pp. 235-248, 2012.
[23] A. Glykas, G. Papaioannou, and S. Perissakis, “Application and cost–benefit analysis of solar hybrid power installation on merchant marine vessels,” Ocean Eng., vol. 37, pp. 592-602, 2010.
[24] K.-J. Lee, D. Shin, D.-W. Yoo, H.-K. Choi, and H.-J. Kim, “Hybrid photovoltaic/diesel green ship operating in standalone and grid-connected mode–Experimental investigation,” Energy, vol. 49, pp. 475-483, 2013.
[25] F. Adamo, G. Andria, G. Cavone, C. De Capua, A. M. L. Lanzolla, R. Morello, et al., “Estimation of ship emissions in the port of Taranto,” Meas., vol. 47, pp. 982-988, 2014.
[26] H. Lan, S. Wen, Y.-Y. Hong, C. Y. David, and L. Zhang, “Optimal sizing of hybrid PV/diesel/battery in ship power system,” Appl. Energy, vol. 158, pp. 26-34, 2015.
[27] N. Rehmatulla, J. Calleya, and T. Smith, “The implementation of technical energy efficiency and CO 2 emission reduction measures in shipping,” Ocean Eng., vol. 139, pp. 184-197, 2017.
[28] M. J. Ahmad and G. Tiwari, “Optimization of tilt angle for solar collector to receive maximum radiation,” Open Renew. Energy J., vol. 2, pp. 19-24, 2009.
[29] A. Mellit, “ANN-based GA for generating the sizing curve of stand-alone photovoltaic systems,” Adv. Eng. Software, vol. 41, pp. 687-693, 2010.
[30] S. A. Kalogirou, “Artificial neural networks in renewable energy systems applications: a review,” Renew. Sustain. Energy Rev., vol. 5, pp. 373-401, 2001.
[31] A. Mellit, M. Benghanem, and S. Kalogirou, “Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure,” Renew. Energy, vol. 32, pp. 285-313, 2007.
[32] S. B. Jeyaprabha and A. I. Selvakumar, “Optimal sizing of photovoltaic/battery/diesel based hybrid system and optimal tilting of solar array using the artificial intelligence for remote houses in India,” Energy Build., vol. 96, pp. 40-52, 2015.
[33] M. A. Gammon, “Optimization of fishing vessels using a Multi-Objective Genetic Algorithm,” Ocean Eng., vol. 38, pp. 1054-1064, 2011.
[34] B. Rezaie, E. Esmailzadeh, and I. Dincer, “Renewable energy options for buildings: case studies,” Energy Build., vol. 43, pp. 56-65, 2011.
[35] J. M. Lujano-Rojas, R. Dufo-López, and J. L. Bernal-Agustín, “Probabilistic modelling and analysis of stand-alone hybrid power systems,” Energy, vol. 63, pp. 19-27, 2013.
[36] T. Markvart: United kingdom: Wiley, 1994.
[37] Y. A. Gandomi, D. S. Aaron, T. A. Zawodzinski, and M. M. Mench, “In situ potential distribution measurement and validated model for all-vanadium redox flow battery,” J. Electrochem. Soc., vol. 163, pp. A5188-A5201, 2016.
[38] E. Rodrigues, G. Osório, R. Godina, A. Bizuayehu, J. Lujano-Rojas, J. Matias, et al., “Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete Island,” Energy, vol. 90, pp. 1606-1617, 2015.
[39] Y. Yang, H. Li, A. Aichhorn, J. Zheng, and M. Greenleaf, “Sizing strategy of distributed battery storage system with high penetration of photovoltaic for voltage regulation and peak load shaving,” IEEE Trans. Smart Grid, vol. 5, pp. 982-991, 2014.
[40] J. Weniger, T. Tjaden, and V. Quaschning, “Sizing of residential PV battery systems,” Energy Procedia, vol. 46, pp. 78-87, 2014.
[41] J. Shen, S. Dusmez, and A. Khaligh, “Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications,” IEEE Trans. Ind. Inf., vol. 10, pp. 2112-2121, 2014.
[42] A. Dolatabadi and B. Mohammadi-Ivatloo, “Stochastic risk-constrained scheduling of smart energy hub in the presence of wind power and demand response,” Appl. Therm. Eng., vol. 123, pp. 40-49, 2017.
[43] L. Wu, M. Shahidehpour, and T. Li, “Stochastic security-constrained unit commitment,” IEEE Trans. Power Syst., vol. 22, pp. 800-811, 2007.
[44] W. Rmisch, “Scenario reduction in stochastic programming: an approach using probability metrics,” 2000.
[45] A. Dolatabadi, M. Jadidbonab, and B. Mohammadi-ivatloo, “Short-term scheduling strategy for wind-based energy hub: a hybrid stochastic/IGDT approach,” IEEE Trans. Sustain. Energy, 2018.
[47] M. Habib, S. Said, M. El-Hadidy, and I. Al-Zaharna, “Optimization procedure of a hybrid photovoltaic wind energy system,” Energy, vol. 24, pp. 919-929, 1999.
[48] T. Markvart, Solar electricity vol. 6: John Wiley & Sons, 2000.
[49] A. V. Da Rosa, Fundamentals of renewable energy processes: Academic Press, 2012.
[50] S. Kaplanis, “New methodologies to estimate the hourly global solar radiation; comparisons with existing models,” Renewable Energy, vol. 31, pp. 781-790, 2006.
[51] J. Cao and X. Lin, “Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks,” Energy Convers. Manage., vol. 49, pp. 1396-1406, 2008.
[52] A. El-Sebaii, F. Al-Hazmi, A. Al-Ghamdi, and S. J. Yaghmour, “Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia,” Appl. Energy, vol. 87, pp. 568-576, 2010.
[53] A. Dolatabadi and B. Mohammadi-Ivatloo, “Stochastic risk-constrained optimal sizing for hybrid power system of merchant marine vessels,” IEEE Trans.Ind. Inf., 2018.
[54] S. Kaplanis and E. Kaplani, “A model to predict expected mean and stochastic hourly global solar radiation I (h; nj) values,” Renew. Energy, vol. 32, pp. 1414-1425, 2007.
[55] A. Maleki and A. Askarzadeh, “Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran,” Sustain. Energy Technol. Assess., vol. 7, pp. 147-153, 2014.
[56] M. Sharafi and T. Y. ELMekkawy, “Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach,” Renew. Energy, vol. 68, pp. 67-79, 2014.
[57] D. Feldman, G. Barbose, R. Margolis, T. James, S. Weaver, N. Darghouth, et al., “Photovoltaic system pricing trends: historical, recent, and near-term projections. 2014 edition,” Presenta. SunShot, Department Energy, NREL/PR-6A20-62558, 2014.
[58] R. Walawalkar, J. Apt, and R. Mancini, “Economics of electric energy storage for energy arbitrage and regulation in New York,” Energy Policy, vol. 35, pp. 2558-2568, 2007.
[60] A. Dolatabadi, B. Mohammadi-ivatloo, M. Abapour, and S. Tohidi, “Optimal stochastic design of wind integrated energy hub,” IEEE Trans. Ind. Inf., 2017.
[61] S. Pazouki, M.-R. Haghifam, and A. Moser, “Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response,” Int. J. Electr. Power Energy Sys., vol. 61, pp. 335-345, 2014.