Comprehensive Parametric Study for Design Improvement of a Low-Speed AFPMSG for Small Scale Wind-Turbines

Document Type : Research paper

Author

Faculty of electrical and computer engineering, university of Tabriz, Tabriz, Iran.

Abstract

In this paper, a comprehensive parametric analysis for an axial-flux permanent magnet synchronous generator (AFPMSG), designed to operate in a small-scale wind-power applications, is presented, and the condition for maximum efficiency, minimum weight and minimum cost is deduced. Then a Computer-Aided Design (CAD) procedure based on the results of parametric study is proposed. Matching between the generator side and turbine characteristics as well as the mechanical constraints is taken into account in design algorithm. A 2.5 kW AFPMSG with two parallel connected stators and surface mounted permanent magnets on its rotor disk is designed using the developed program, and then three dimensional finite-element analyses are carried out to validate the design procedure.

Keywords


[1]    P. Gipe, ‘‘Wind Power—Renewable Energy for Home, Farm and Business,’’ White River Junction, Vermont: Chelsea Green Publishing Company, 2004.
[2]    A. Saifee, A. Mittal, S. S. Laxminarayan, M. Singh, ‘‘Design of a novel field controlled constant voltage axial flux permanent magnet generator for enhanced wind power extraction,’’ IET Renewable Power Gener., vol. 11 Issue. 7, pp. 1018-1025, 2017.
[3]    V. Behjat and A. Dehghanzadeh, ‘‘Experimental and 3D finite element analysis of a slotless air-cored axial flux PMSG for wind turbine application,’’ J. Oper. Autom. Power Eng., vol. 2, pp. 121-128, 2014.
[4]    D. Habibinia, M. R. Feyzi, and N. Rostami, ‘‘A new method for computation of axial flux permanent magnet synchronous machine inductances under saturated condition,’’ J. Oper. Autom. Power Eng., vol. 6, no. 2, 2016.
[5]    S. S. Laxminarayan, M. Singh, A. Saifee, A. Mittal, A, ‘‘Design, modeling and simulation of variable speed axial flux permanent magnet wind generator,’’ Sust. Energy Tech. Assess., vol 19, pp.114-124, 2017.
[6]    A. Daghigh, H. Javadi, and H. Torkaman, ‘‘Design optimization of direct-coupled ironless axial flux permanent magnet synchronous wind generator with low cost and high annual energy yield,’’ IEEE Trans. Magn., vol 52, no 9, pp.1-11, 2016.
[7]    A. Schmidhofer, and H. Weiss, ‘‘Optimization of power electronics for small stand-alone wind power stations,’’ in Proce. 10th Europ. Conf. Power Electron. Appl., Toulouse, France, on CD-ROM, September 2-4, 2003.
[8]    M. Shokri, N. Rostami, V. Behjat, J. Pyrhönen, and M. Rostami, ‘‘comparison of performance characteristics of axial-flux permanent-magnet synchronous machine with different magnet shapes,’’ IEEE Trans. Magn., vol. 51, no. 12. 2015.
[9]    Y. Chen, P. Pillay, and A. Khan, ‘‘PM wind generator topologies,’’ IEEE Trans. Ind. Appl., vol. 41, no. 6, 2005.
[10]  A. Cavagnino, M. Lazzari, F. Profumo, and A. Tenconi, ‘‘A comparison between the axial flux and the radial flux structures for MP synchronous motors,’’ IEEE Trans. Ind. Appl., vol. 38, no. 6, pp.1517-1524, 2002.
[11]  P. Curiac, D. H. Kang, ‘‘Preliminary evaluation of a MW-class low-speed AFPMSM with self-magnetization function of the armature coils,’’ IEEE Trans. Energy Convers., vol. 22, no. 3, pp.621-628, 2007.
[12]  P. R. Upadhyay, K. R. Rajagopa, ‘‘FE analysis and computer-aided design of a sandwiched axial-flux permanent magnet brushless DC motor,’’ IEEE Trans. Magn., vol. 42, no. 10, October 2006.
[13]  T. F. Chan, L. L. Lai, ‘‘An axial-flux permanent-magnet synchronous generator for a direct-coupled wind-turbine system,’’ IEEE Trans. Energy Convers., vol. 22, no. 1, March 2007.
[14]  F. Caricchi, F. Crescimbini, E. Fedeli, and G. Nola, ‘‘Design and construction of a Wheel-Directly-Coupled-Axial-Flux PM Motor Prototype for EVs,’’ IEEE-IAS Annual Meeting, Denver CO, pp. 254-261, 1994.
[15]  S. Huang, J. Luo, F. Leonardi, and T. A. Lipo, ‘‘A comparison of power density for axial flux machines based on general purpose sizing equations,’’ IEEE Trans. Energy Convers., vol. 14, no. 2, June 1999.
[16]  S. Huang, J. Luo, F. Leonardi, and T. A. Lipo, ‘‘A general approach to sizing and power density equations for comparison of electrical machines,’’ IEEE-IAS Annual Meeting, San Diego, CA Oct. 1996. pp. 836-842.
[17]  A. Di Gerlando, G. Foglia, M. F. Iacchetti. R. Perini, ‘‘Axial flux PM machines with concentrated armature windings: design analysis and test validation of wind energy generators,’’ IEEE Trans. Ind. Electron., vol. 58, no. 9, September 2011.
[18]  A. Parviainen, ‘‘design of axial flux permanent-magnet low-speed machines and performance comparison between radial-flux and axial-flux machines’, PhD Thesis, University of Technology, Lappeenranta, Finland, 2005.
[19]  N. Rostami, M. R. Feyzi, J. Pyrhönen, A. Parviainen, and V. Behjat, ‘‘Genetic algorithm approach for improved design of a variable speed axial-flux permanent-magnet synchronous generator,’’ IEEE Trans. Magn., vol. 48, no. 12, 2012.
[20]  N. Rostami, M. Rostami, ‘‘Analytical design of afpm machines with cylindrically shaped magnets using quasi-3d method,’’ COMPEL - The Int. J. Comput. Math. Electr. Electron. Eng., vol. 36, no. 4. 2017.
[21]  N. Rostami, M. R. Feyzi, J. Pyrhonen, A. Parviainen, M. Niemela, ‘‘Lumped-parameter thermal model for axial flux permanent magnet machines,’’ IEEE Trans. Magn. vol. 49, no. 3, 1178-1184, 2013.
[22]  D. C. Hanselman, ‘‘Brushless permanent magnet motor design,’’ New York: Elsevier Scientific Publishing Company, 2003.
[23]  T. Heikkilä, ‘‘Permanent magnet synchronous motor for industrial inverter applications–analysis and design,’’ Dissertation. Lappeenranta University of Technology, Finland, 2002.
[24] J. F. Gieras, M. Wing, ‘‘Permanent magnet motor technology – design and applications,’’ New York: Marcel Dekker Inc, 1997.
Volume 7, Issue 1
May 2019
Pages 54-64
  • Receive Date: 05 May 2018
  • Revise Date: 30 June 2018
  • Accept Date: 12 August 2018
  • First Publish Date: 01 May 2019