[1] N. Hatziargyriou, H. Asano, M.R. Iravani, C. Marnay. “Microgrids”, IEEE Power Energy Mag., vol. 5, no. 4, pp.78–94, 2007.
[2] S. N. Bhaskara and B. H. Chowdhury, “Microgrids-A review of modeling, control, protection, simulation and future potential,” Power Energy Soc. Gen. Meeting, pp. 1-7, 2012.
[3] D.E. Olivares, A. Mehrizi-Sani, A.H. Etemadi, C.A Cañizares, R. Iravani, M. Kazerani, A.H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke and G.A. Jimenez-Estevez,“Trends in microgrid control”, IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919. 2014.
[4] M. Allahnoori, S.H Kazemi, H. Abdi, R. Keyhani, “Reliability assessment of distribution systems in presence of microgrids considering uncertainty in generation and load demand”, J. Oper. Autom. Power Eng., vol. 2, no. 2, pp. 113- 120, 2014.
[5] H. Shayeghi, E. Shahryari, “Optimal operation management of grid-connected microgrid using multi objective group search optimization algorithm”, J. Oper. Autom. Power Eng., vol. 5, no. 2, pp. 227-239, 2017.
[6] P. Rodriguez, A.V. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, “Flexible active power control of distributed power generation systems during grid faults”, IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2583 - 2592. 2007.
[7] A. Camacho, M. Castilla, J. Miret, J. C. Vasquez, and E. Alarcón-Gallo, “Flexible voltage support control for three-phase distributed generation inverters under grid fault”, IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1429-1441, 2013.
[8] X. Guo, W. Liu, X. Zhang, et al. “Flexible control strategy for grid-connected inverter under unbalanced grid faults without PLL,” IEEE Trans. Power Electron, vol. 30, no. 4, pp. 1773-1778, 2015.
[9] Xiaoqiang Guo, Wenzhao Liu, and Zhigang Lu, M. J. Guerrero “Flexible Power Regulation and Current-limited Control of Grid-connected Inverter under Unbalanced Grid Voltage Faults”, IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7425-7432. 2017.
[10] S. Gholami. M. Aldeen, and S. Saha, “Control strategy for dispatchable distributed energy resources in islanded microgrids”,
IEEE Trans. Power Syst., vol. 33, no. 1, pp. 141-152, 2018.
[11] B. Vaseghi , M. A. Pourmina , S. Mobayen, “Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control”, Nonlinear Dyn., vol. 89, no. 3, pp. 1689-1704, 2017.
[12] O. Mofid, S. Mobayen, “Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties”, ISA Trans., vol. 72, pp. 1-14, 2018.
[13] S. Mobayen, “Design of novel adaptive sliding mode controller for perturbed Chameleon hidden chaotic flow”, Nonlinear Dyn., vol. 92, No. 4, pp. 1539-1553. 2018.
[14] Z. Chen, A. Luo, H. Wang ,” Adaptive sliding-mode voltage control for inverter operating in islanded mode in microgrid”, Int. J. Electr. Power Energy Syst., vol. 66, pp. 133-143, 2015.
[15] M. B. Delghavi, S. Shoja-Majidabad and A. Yazdani, “Fractional-order sliding-mode control of islanded distributed energy resource systems”, IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1482-1491, October 2016.
[16] Mohammad B. Delghavi and Amirnaser Yazdani, “Sliding-mode control of ac voltages and currents of dispatchable distributed energy resources in master-slave-organized inverter-based microgrids”,
IEEE Trans. Smart Grid, 2017, DOI:
10.1109/TSG.2017.2756935
[17] Satish Kumar Gudey, Rajesh Gupta,” Recursive fast terminal sliding mode control in voltage source inverter for a low-voltage microgrid system”, IET Gener., Trans. Distrib., vol. 10, no. 7, pp. 1536-1543, 2016.
[18] M. M.Rezaei, J. Soltani, “A robust control strategy for a grid-connected multi-bus microgrid under unbalanced load conditions”, Electr. Power Energy Syst., vol. 71, pp. 68–76, 2015.
[19] J. Mahseredjian, S. Lefebvre, X.D. Do, “A new method for time-domain modeling of nonlinear circuits in large linear networks”, Proc. 11th Power Syst. Comput. Conf., No. 4, 1993, pp. 915-922.
[20] S. Saha, M. Aldeen, “Dynamic modeling of power systems experiencing faults in transmission /distribution networks”
IEEE Trans. Power Syst., vol. 30, pp. 2349-2363, 2015.
[21] A. Coronado-Mendoza, A. Domínguez-Navarro, “Dyn-amic phasors modeling of inverter fed induction generator”, Electric Power Syst. Res., vol. 107 pp. 68-76. 2014.
[22] T.H. Demiray, “Simulation of power system dynamics using dynamic phasor models,” Swiss Federal Institute Technol., Zurich, 2008.
[23] S. Huang, R. Song, and X. Zhou, “Analysis of balanced and unbalanced faults in power systems using dynamic phasors”, Proce. Conf. Power Syst. Thechnol., 2002.
[24] J. Belikov, Y. Levron, “Comparison of time-varying phasor and dq0 dynamic models for large transmission networks”, Electr. Power Energy Syst., vol. 93 pp. 65-74, 2017
[25] D. Baimel, J. Belikov, J. M. Guerrero, and Y. Levron, “Dynamic modeling of networks, microgrids, and renewable sources in the dq0 reference frame: A survey,” IEEE Trans., vol. 5, pp. 21323-21335, 2017.
[27] J.E. Slotine, W. Li, “Applied nonlinear control,” Englewood Cliffs, NJ: Prentice-Hall; 1991.
[28] E. Robles, S. Ceballos, J. Pou, J. Luis Mart, J. Zaragoza, and Pedro Ibanez, “Variable-frequency grid-sequence detector based on a quasi-ideal low-pass filter stage and a phase-locked loop”, IEEE Trans. Power Electron., vol. 25, no. 10, pp. 2552-2563, 2010.
[29] J. Pou, E. Robles, S. Ceballos, J. Zaragoza, A. Arias, and P. Ibanez, “Control of back-to-back-connected neutral-point-clamped converters in wind mill applications,” presented EPE2007, Dresden, Denmark, Sep. 2-5.
[30] A. Ghoshal and V. John, “A Method to Improve PLL performance under abnormal grid conditions,” presented at the NPEC2007, Indian Inst. Sci., Bangalore, India, Dec. 17-19.
[31] F. D. Freijedo, J. Doval-Gandoy, O. Lopez, and E. Acha, “A generic open loop algorithm for three-phase grid voltage/current synchronization with particular reference to phase, frequency, and amplitude estimation,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 94-107, Jan. 2009.