[1] D. A. Steigerwald et al., “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron., vol. 8, no. 2, pp. 310–320, 2002.
[2] Haijin Liao, Yonghai Yu, and Xiaojian Liu, “The research of humanized design of the LED landscape lighting lamp,” 2009 IEEE 10th Int. Conf. Comput-Aided. Ind. Design Conceptual Des., 2009, pp. 499–502.
[3] D.-H. Yoo and G.-Y. Jeong, “LCD panel sector-dimming controlled high efficiency LED backlight drive system,” 2009 Int. Conf. Electr. Mach. Syst., 2009, pp. 1–6.
[4] “International standard IEC 1000-3-2 Class C. LED,” Mar-1995.
[5] E. Energy Star, “ENERGY STAR ® Program Requirements for Solid State Lighting Luminaires.”
[6] B. Lehman, A. Wilkins, S. Berman, M. Poplawski, and N. Johnson Miller, “Proposing measures of flicker in the low frequencies for lighting applications,” 2011 IEEE Energy Convers. Congress Exposition, 2011, pp. 2865–2872.
[7] A. Wilkins, J. Veitch, and B. Lehman, “LED lighting flicker and potential health concerns: IEEE standard PAR1789 update,” 2010 IEEE Energy Convers. Congress Exposition, 2010, pp. 171–178.
[8] Evox Rifa electrolytic capacitors, “Electrolytic Capacitors Application Guide,” Espoo, Finland, 2001.
[9] “Lifetime of White LEDs, Energy Efficiency and Renewable Energy,” U.S.Dept. Energy, Washington DC, 2009.
[10] L. Han and N. Narendran, “An Accelerated Test Method for Predicting the Useful Life of an LED Driver,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2249–2257, Aug. 2011.
[11] M. Nassary, M. Orabi, E. M. Ahmed, E. S. Hasaneen, and M. Gaafar, “Modified harmonic injection technique for electrolytic capacitor-less LED driver,” 2017 19th Int. Middle-East Power Syst. Conf. MEPCON 2017 - Proc., vol. 2018–Febru, no. December, pp. 1459–1464, 2018.
[12] J. Baek and S. Chae, “Off-line buck LED driver for series connected LED segments,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 1506–1510, 2017.
[13] Hyun-Su Gu and Sang-Kyoo Han, "A current-balancing modular driver for multi-channel LEDs," 8th IET Int. Conf. Power Electron. Mach. and Drives (PEMD 2016), Glasgow, 2016, pp. 1-6.
[14] H. Wu, S. C. Wong, and C. K. Tse, “A More Efficient PFC Single-Coupled-Inductor Multiple-Output Electrolytic Capacitor-less LED Driver With Energy-Flow-Path Optimization,” IEEE Trans. Power Electron., vol. PP, no. c, pp. 1–1, 2018.
[15] H.-Y. Park, B.-J. Seo, K.-S. Park, K.-S. Kang, and E.-C. Nho, “Electrolytic capacitor-less high-brightness LED driving AC/DC converter for LED performance degradation reduction,” Electron. Lett., vol. 54, no. 10, pp. 648–649, 2018.
[16] K. Park, B. Seo, K. Kang, and E. Nho, “An AC-DC Power Converter for Electrolytic Capacitor-less LED Driver with High Luminous Efficacy,” 2018 Int. Power Electron. Conf. (IPEC-Niigata 2018 -ECCE Asia), pp. 922–926, 2018.
[17] B. White, Y. F. Liu, and X. Liu, “A control technology to achieve a low cost flicker-free single stage LED driver with power factor correction,” 2015 IEEE 16th Work. Control Model. Power Electron. COMPEL 2015, 2015.
[18] Q. Hu and R. Zane, “Minimizing Required Energy Storage in Off-Line LED Drivers Based on Series-Input Converter Modules,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2887–2895, Oct. 2011.
[19] P. Fang, W. Sam, Y. F. Liu, and P. C. Sen, “Single-stage LED Driver Achieves Electrolytic Capacitor-less and Flicker-free Operation with Unidirectional Current Compensator,” IEEE Trans. Power Electron., vol. 8993, no. c, 2018.
[20] P. Fang and Y. F. Liu, “Single stage primary side controlled offline flyback LED driver with ripple cancellation,” in 2014 IEEE Appl. Power Electron. Conference and Exposition - APEC 2014, 2014, pp. 3323–3328.
[21] P. Fang, B. White, C. Fiorentino, and Y.-F. Liu, “Zero ripple single stage AC-DC LED driver with unity power factor,” in 2013 IEEE Energy Convers. Congress Exposition., 2013, pp. 3452–3458.
[22] Y. Qiu, H. Wang, Z. Hu, L. Wang, Y.-F. Liu, and P. C. Sen, “Electrolytic-capacitor-less high-power LED driver,” in 2014 IEEE Energy Convers. Congress Exposition (ECCE), 2014, pp. 3612–3619.
[23] H. Valipour, G. Rezazadeh, and M. R. Zolghadri, “Flicker-free electrolytic capacitor-less universal input offline LED driver with PFC,” IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6553–6561, 2016.
[24] Y. Qiu, L. Wang, Y.-F. Liu, and P. C. Sen, “A novel bipolar series Ripple compensation method for single-stage high-power LED driver,” in 2015 IEEE Appl. Power Electron.Conf. Exposition (APEC), 2015, pp. 861–868.
[25] S. Buso, G. Spiazzi, M. Meneghini, and G. Meneghesso, “Performance Degradation of High-Brightness Light Emitting Diodes Under DC and Pulsed Bias,” IEEE Trans. Device Mater. Reliab., vol. 8, no. 2, pp. 312–322, Jun. 2008.
[26] M.-S. Lin and C.-L. Chen, “An LED Driver With Pulse Current Driving Technique,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4594–4601, Nov. 2012.
[27] A. Note, “Application note: Pulsed Over-Current Driving of Cree ® XLamp ® LEDs: Information and Cautions Introduction,” pp. 1–11, 2016.
[28] J. C. W. Lam and P. K. Jain, “A high power factor, electrolytic capacitor-less AC-input LED driver topology with high frequency pulsating output current,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 943–955, 2015.
[29] “Cree ® XLamp ® MHB-A LEDs,” Prod. Fam. data sheet, 2017.