[1] A. Rastgou, J. Moshtagh, and S. Bahramara, “Probabilistic Power Distribution Planning Using Multi-Objective Harmony Search Algorithm,” J. Oper. Autom. Power Eng., vol. 6, pp. 111-125, 2018.
[2] P. Sheikhahmadi, S. Bahramara, J. Moshtagh, and M. Yazdani Damavandi, “A risk-based approach for modeling the strategic behavior of a distribution company in wholesale energy market,” Appl. Energy, vol. 214, pp. 24-38, 2018.
[3] S. Bahramara, M. Yazdani-Damavandi, J. Contreras, M. Shafie-Khah, and J. P. Catalão, “Modeling the strategic behavior of a distribution company in wholesale energy and reserve markets,” IEEE Trans. Smart Grid, vol. 9, pp. 3857-3870, 2018.
[4] A. Sadeghi Yazdankhah and R. Kazemzadeh, “Power management in a utility connected micro-grid with multiple renewable energy sources,” J. Oper. Autom. Power Eng., vol. 5, pp. 1-10, 2017.
[5] A. A. Algarni and K. Bhattacharya, “A generic operations framework for discos in retail electricity markets,” IEEE Trans. Power Syst., vol. 24, pp. 356-367, 2009.
[6] A. Safdarian, M. Fotuhi-Firuzabad, and M. Lehtonen, “A stochastic framework for short-term operation of a distribution company,” IEEE Trans. Power Syst., vol. 28, pp. 4712-4721, 2013.
[7] C. Zhang, Q. Wang, J. Wang, M. Korpås, P. Pinson, J. Østergaard, “Trading strategies for distribution company with stochastic distributed energy resources,” Appl. Energy, vol. 177, pp. 625-635, 2016.
[8] S. M. Larimi, M. Haghifam, and A. Ghadiri, “Determining the guaranteed energy purchase price for Distributed Generation in electricity distribution networks,” Util. Policy, vol. 41, pp. 118-127, 2016.
[9] H. Haghighat and S. W. Kennedy, “A bilevel approach to operational decision making of a distribution company in competitive environments,” IEEE Trans. Power Syst., vol. 27, pp. 1797-1807, 2012.
[10] R. Palma-Behnke, L. S. Vargas, and A. Jofré, “A distribution company energy acquisition market model with integration of distributed generation and load curtailment options,” IEEE Trans. Power Syst., vol. 20, pp. 1718-1727, 2005.
[11] J. Vasiljevska, J. P. Lopes, and M. Matos, “Evaluating the impacts of the multi-microgrid concept using multicriteria decision aid,” Electr. Power Syst. Res., vol. 91, pp. 44-51, 2012.
[12] N. Hatziargyriou, A. Anastasiadis, A. Tsikalakis, and J. Vasiljevska, “Quantification of economic, environmental and operational benefits due to significant penetration of Microgrids in a typical LV and MV Greek network,” Eur. Trans. Electr. Power., vol. 21, pp. 1217-1237, 2011.
[13] A. K. Marvasti, Y. Fu, S. DorMohammadi, and M. Rais-Rohani, “Optimal operation of active distribution grids: A system of systems framework,” IEEE Trans. Smart Grid, vol. 5, pp. 1228-1237, 2014.
[14] S. Bahramara, M. P. Moghaddam, and M. Haghifam, “A bi-level optimization model for operation of distribution networks with micro-grids,” Int. J. Electr. Power Energy Syst., vol. 82, pp. 169-178, 2016.
[15] S. Bahramara, M. P. Moghaddam, and M. R. Haghifam, “Modelling hierarchical decision making framework for operation of active distribution grids,”IET Gener. Transm. Distrib., vol. 9, pp. 2555-2564, 2015.
[16] H. Algarvio, F. Lopes, J. Sousa, and J. Lagarto, “Multi-agent electricity markets: Retailer portfolio optimization using Markowitz theory,” Electr. Power Syst. Res., vol. 148, pp. 282-294, 2017.
[17] M. Khojasteh and S. Jadid, “Decision-making framework for supplying electricity from distributed generation-owning retailers to price-sensitive customers,” Util. Policy, vol. 37, pp. 1-12, 2015.
[18] S. Nojavan, K. Zare, and B. Mohammadi-Ivatloo, “Risk-based framework for supplying electricity from renewable generation-owning retailers to price-sensitive customers using information gap decision theory,” Int. J. Electr. Power Energy Syst., vol. 93, pp. 156-170, 2017.
[19] N. Mahmoudi, T. K. Saha, and M. Eghbal, “Modelling demand response aggregator behavior in wind power offering strategies,” Appl. Energy, vol. 133, pp. 347-355, 2014.
[20] M. Zugno, J. M. Morales, P. Pinson, and H. Madsen, “A bilevel model for electricity retailers' participation in a demand response market environment,” Energy Econ., vol. 36, pp. 182-197, 2013.
[21] M. Marzband, A. Sumper, A. Ruiz-Álvarez, J. L. Domínguez-García, and B. Tomoiagă, “Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets,” Appl. Energy, vol. 106, pp. 365-376, 2013.
T. Lv, Q. Ai, and Y. Zhao, “A bi-level multi-objective optimal operation of grid-connected microgrids,” Electr. Power Syst. Res., vol. 131, pp. 60-70, 2016.
[22] A. Rastgou, S. Bahramara, and J. Moshtagh, “Flexible and robust distribution network expansion planning in the presence of distributed generators,” Int. Trans. Electr. Energy Syst., p. e2637.
[23] A. Rastgou, J. Moshtagh, and S. Bahramara, “Improved harmony search algorithm for electrical distribution network expansion planning in the presence of distributed generators,” Energy, vol. 151, pp. 178-202, 2018.
[24] M. Azaza and F. Wallin, “Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden,” Energy, vol. 123, pp. 108-118, 2017.
[25] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple objectives with particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, pp. 256-279, 2004.
[26] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimization,” Annal. Oper. Res., vol. 153, pp. 235-256, 2007.
[27] D. E. Goldberg, “Genetic algorithm,” Search, Optim. Mach. Learn., pp. 343-349, 1989.
[28] J. Horn, “Handbook of evolutionary computation,” Publishing Ltd Oxford University Press, England, 1997.