Selective Harmonics Elimination Technique in Cascaded H-Bridge Multi-Level Inverters Using the Salp Swarm Optimization Algorithm

Document Type : Research paper


Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.


A new optimization method is proposed in this paper for finding the firing angles in multi-level voltage source inverters to eliminate low-order selective harmonics and reduce total harmonic distortion (THD) value of the output voltage. For thid end, Fourier series is used for calculating objective function and selecting specific harmonics. Regarding the nature and complexity of the employed non-algebraic equations in the optimization problem for achieving the optimal angle in the multi-level inverter, a recent developed meta-heuristic method known as Salp Swarm Algorithm (SSA) is presented. In the proposed method, the optimal angles for a given multi-level inverter are obtained based on the objective function such that the magnitudes of the selective harmonics and the THD value of the output voltage are reduced. The method is applied on a cascaded H-bridge type five-level inverter. The simulation results illustrate that the magnitudes of the selective harmonics and the THD percentage of the output voltage have been reduced through selecting the optimal switching angle by the proposed optimization algorithm. The result of this method are compared with those of SPWM method. Moreover, the performance of SSA algorithm with respect to PSO algorithm is compared which shows its rapid convergence speed and less THD value.


[1]    J.-S. Lai, F.Z. Peng, “Multilevel converters-a new breed of power converters,” Proce. IEEE Ind. Appl. Conf. 1995. Thirtieth IAS Annu. Meet. IAS’95., Conf. Rec. 1995 IEEE, 1995, pp. 2348–2356.
[2]    J. Rodriguez, J.-S. Lai, F.Z. Peng, “Multilevel inverters: a survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron. vol. 49, pp. 724-738, 2002.
[3]    M.M. Rahimian, M. Hosseinpour, A. Dejamkhooy, “A modified phase-shifted pulse width modulation to extend linear operation of hybrid modular multi-level converter,” J. Oper. Autom. Power Eng., vol. 6, no. 2, pp. 183-192, 2018.
[4]    N. Rasekh, MM. Rahimian, M. Hosseinpour, A. Dejamkhooy, A. Akbarimajd, “A step by step design procedure of PR controller and capacitor current feedback active damping for a LCL-type grid-tied T-type inverter,” Proce. 2019 10th Int. Power Electron. Drive Syst. Tech. Conf. (PEDSTC), 2019, pp. 612-617.
[5]    SG. Ardakani, M. Hosseinpour, M. Shahparasti, M. Siahi, “Direct torque control of low-voltage three-phase induction motor using a three-level eight-switch inverter,” Arab. J Sci. Eng., Early access, 2019.
[6]    M. Farhadi Kangarlu, E. Babaei, and F. Blaabjerg, “An LCL-filtered single-phase multilevel inverter for grid integration of pv systems,” J. Oper. Autom. Power Eng., vol. 4, no. 1, pp. 54–65, 2016.
[7]    M.G. Sundari, M. Rajaram, S. Balaraman, “Application of improved firefly algorithm for programmed PWM in multilevel inverter with adjustable DC sources,” Appl. Soft Comput., vol. 41, pp. 169-179, 2016.
[8]    A. Nabae, I. Takahashi, H. Akagi, “A new neutral-point-clamped PWM inverter,” IEEE Trans. Ind. Appl., pp. 518-523, 1981.
[9]    T.A. Meynard, H. Foch, “Multi-level choppers for high voltage applications,” EPE J., vol. 2, pp. 45-50, 1992.
[10]  K. Corzine, Y.L. Familiant, “A new cascaded multilevel H-bridge drive,” 2002.
[11]  M. Hosseinpour, M. Mohamadian, A. Yazdian Varjani, “Design and analysis of the droop-controlled parallel four-leg inverters to share unbalanced and nonlinear loads,” Przegląd Elektrotechniczny, vol. 90, no. 1, pp. 105-110, 2014.
[12]  M. Hosseinpour, A. Dejamkhooy, “Control and power sharing among parallel three‐phase three‐wire and three‐phase four‐wire inverters in the presence of unbalanced and harmonic loads,” IEEJ Trans. Electr. Electron. Eng., vol. 13, no. 7, pp. 1027-1033, 2018.
[13]  S. Kouro, J. Rebolledo, J. Rodríguez, “Reduced switching-frequency-modulation algorithm for high-power multilevel inverters,” IEEE Trans. Ind. Electron. vol. 54 pp. 2894-2901, 2007.
[14]  M.S.A. Dahidah, G. Konstantinou, V.G. Agelidis, “A review of multilevel selective harmonic elimination PWM: formulations, solving algorithms, implementation and applications,” IEEE Trans. Power Electron., vol. 30, pp. 4091-4106, 2015.
[15]  H.S. Patel, R.G. Hoft, “Generalized techniques of harmonic elimination and voltage control in thyristor inverters: Part I--Harmonic Elimination,” IEEE Trans. Ind. Appl., pp. 310-317, 1973.
[16]  H.S. Patel, R.G. Hoft, “Generalized techniques of harmonic elimination and voltage control in thyristor inverters: part II---voltage control techniques,” IEEE Trans. Ind. Appl., pp. 666-673, 1974.
[17]  K. Yang, Z. Yuan, R. Yuan, W. Yu, J. Yuan, J. Wang, “A Groebner bases theory-based method for selective harmonic elimination,” IEEE Trans. Power Electron., vol. 30, pp. 6581-6592, 2015.
[18]  M.A. Memon, S. Mekhilef, M. Mubin, M. Aamir, “Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review,” Renew. Sustain. Energy Rev., vol. 82, pp. 2235-2253, 2018.
[19]  T.-J. Liang, R.M. O’Connell, R.G. Hoft, “Inverter harmonic reduction using Walsh function harmonic elimination method,” IEEE Trans. Power Electron. vol. 12 pp. 971-982, 1997.
[20]  J. Kumar, B. Das, P. Agarwal, “Harmonic reduction technique for a cascade multilevel inverter,” Int. J. Recent Trends Eng., vol. 1, no. 3, pp. 181, 2009.
[21]  G.H. Aghdam, “Optimised active harmonic elimination technique for three-level T-type inverters,” IET Power Electron., vol. 6, pp. 425-433, 2013.
[22]  G.T. Son, Y.-H. Chung, S.-T. Baek, H.J. Kim, T.S. Nam, K. Hur, et al., “Improved PD-PWM for minimizing harmonics of multilevel converter using gradient optimization,” Proce. PES Gen. Meet. Conf. Expo. 2014 IEEE, IEEE, 2014, pp. 1-5.
[23]  J. Sun, H. Grotstollen, “Solving nonlinear equations for selective harmonic eliminated PWM using predicted initial values,” Proce. Ind. Electron. Control. Instrumentation, Autom. 1992. Power Electron. Motion Control. Proc. 1992 Int. Conf., IEEE, 1992, pp. 259-264.
[24]  K. Imarazene, H. Chekireb, “Selective harmonics elimination PWM with self-balancing DC-link in photovoltaic 7-level inverter,” Turkish J. Electr. Eng. Comput. Sci., vol. 24, pp. 3999-4014, 2016.
[25]  K. Yang, Q. Zhang, R. Yuan, W. Yu, J. Yuan, J. Wang, “Selective harmonic elimination with Groebner bases and symmetric polynomials,” IEEE Trans. Power Electron., vol. 31, pp. 2742-2752, 2016.
[26]  J.N. Chiasson, L.M. Tolbert, K.J. McKenzie, Z. Du, “Elimination of harmonics in a multilevel converter using the theory of symmetric polynomials and resultants,” IEEE Trans. Control Syst. Technol., vol. 13, pp. 216-223, 2005.
[27]  C.-F. Zheng, B. Zhang, “Application of Wu method to harmonic elimination techniques,” Proce. Zhongguo Dianji Gongcheng Xuebao(Proc. Chin. Soc. Electr. Eng.), 2005, pp. 40-45.
[28]  J.N. Chiasson, L.M. Tolbert, Z. Du, K.J. McKenzie, “The use of power sums to solve the harmonic elimination equations for multilevel converters,” EPE J., vol. 15, pp. 19-27, 2005.
[29]  B. Ozpineci, L.M. Tolbert, J.N. Chiasson, “Harmonic optimization of multilevel converters using genetic algorithms,” Proce. 2004 IEEE 35th Annu. Power Electron. Spec. Conf. (IEEE Cat. No.04CH37551), IEEE, 2004, pp. 3911-3916. doi:10.1109/PESC.2004.1355167.
[30]  A.M. Amjad, Z. Salam, A.M.A. Saif, “Application of differential evolution for cascaded multilevel VSI with harmonics elimination PWM switching,” Int. J. Electr. Power Energy Syst., vol. 64, pp. 447-456, 2015.
[31]  A. Kavousi, B. Vahidi, R. Salehi, M.K. Bakhshizadeh, N. Farokhnia, S.H. Fathi, “Application of the bee algorithm for selective harmonic elimination strategy in multilevel inverters,” IEEE Trans. Power Electron., vol. 27, pp. 1689-1696, 2012.
[32]  V.K. Gupta, R. Mahanty, “Optimized switching scheme of cascaded H-bridge multilevel inverter using PSO,” Int. J. Electr. Power Energy Syst., vol. 64, pp. 699-707, 2015.
[33]  S. Sudha Letha, T. Thakur, J. Kumar, “Harmonic elimination of a photo-voltaic based cascaded H-bridge multilevel inverter using PSO (particle swarm optimization) for induction motor drive,” Energy, vol. 107, pp. 335-346, 2016.
[34]  A. Ajami, M.R.J. Oskuee, A. Mokhberdoran, H. Shokri, “Selective harmonic elimination method for wide range of modulation indexes in multilevel inverters using ICA,” J. Cent. South Univ., vol. 21, pp. 1329-1338, 2014.
[35]  K. Ganesan, K. Barathi, P. Chandrasekar, D. Balaji, “Selective Harmonic Elimination of Cascaded Multilevel Inverter Using BAT Algorithm,” Procedia Technol., vol. 21, pp. 651-657, 2015.
[36]  N.V. Kumar, V.K. Chinnaiyan, M. Pradish, M.S. Divekar, “Selective harmonic elimination: An comparative analysis for seven level inverter,” Proce. 2016 IEEE Students’ Technol. Symp., IEEE, 2016, pp. 157-162.
[37]  N.V. kumar, V.K. Chinnaiyan, M. Pradish, S.P. Karthikeyan, “Simulated Annealing Based Selective Harmonic Elimination for Multi-level Inverter,” Energy Procedia, vol. 117, pp. 855-861, 2017.
[38]  J. Lu, C. Mao, L. Wang, H. Lou, D. Wang, “Fundamental modulation strategy with selective harmonic elimination for multilevel inverters,” IET Power Electron. vol. 7 pp. 2173-2181, 2014.
[39]  P.Q. Dzung, N.T. Tien, N. Dinh Tuyen, H.-H. Lee, “Selective harmonic elimination for cascaded multilevel inverters using grey wolf optimizer algorithm,” Proce. 2015 9th Int. Conf. Power Electron. ECCE Asia (ICPE-ECCE Asia), IEEE, 2015, pp. 2776-2781.
[40]  D.H. Wolpert, W.G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput., vol. 1, pp. 67-82, 1997.
[41]  S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili, “Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems,” Adv. Eng. Softw., vol. 114, pp. 163-191, 2017.
Volume 8, Issue 1
February 2020
Pages 32-42
  • Receive Date: 09 December 2018
  • Revise Date: 04 April 2019
  • Accept Date: 27 April 2019
  • First Publish Date: 01 February 2020