[1] S. M. Z-Hosseini; M. O. Buygi. “How Does Large-scale Wind Power Generation Affect Energy and Reserve Prices?,” J. Oper. Autom. Power Eng., vol. 6, no. 2, pp. 169-182, 2018.
[2] K. V. Dave, S. M. Kanani. “Use of SVS for stability improvement analysis in wind farm by SVC during fault,” Int. J. Eng. Sci. Res.,vol. 6, no. 1, pp. 43-48, 2016
[3] M. Moradzadeh, H. Shayeghi, L. Vandevelde and M. Saif, “Impact of increased penetration of large-scale wind farms on power system dynamic stability–A review,” Proce. IEEE 15th Int. Conf. Environ. Electr. Eng., Rome, pp. 1522-1526, 2015.
[4] J. M. Rodriguez and J. L. Fernandez, “Incidence on power system dynamics of high penetration of fixed speed and doubly fed wind energy systems: study of the Spanish case” IEEE Trans. Power Syst., vol. 17, no. 4, 2002.
[5] H. S. Ko, G. G. Yoon, and W. P. Hong, “Active use DFIG-based variable- speed wind-turbine for voltage control in power system operation” J. Elect. Eng. Technol., vol. 3, no. 2, pp. 254-262, 2008.
[6] R. Grunbaum, “FACTS for grid integration of wind power” Proce. IEEE PES Innovative Smart Grid Technol. Conf. Eur., 2010, pp. 1-8.
[7] M. T. Hagh, “Dynamic and stability improvement of a wind farm connected to grid using UPFC,” Proce. IEEE Int. Conf. Ind. Technol., 2008, pp. 1-5.
[8] M. Ferdosian, H. Abdi and A. Bazaei, “Improved dynamic performance of wind energy conversion system by UPFC,” Proce. IEEE Int. Conf. Ind. Technol., Cape Town, 2013, pp. 545-550.
[9] Ghasemi and C. A. Canizares, “Validation of a STATCOM transient stability model through small-disturbance stability studies,” Proce. IEEE Int. Conf. Syst. Eng., San Antonio, TX, 2007, pp. 1-6.
[10] Y. M. Alharbi and A. Abu-Siada, “Application of UPFC to improve the low-voltage-ride-through capability of DFIG,” Proce. IEEE 24th Int. Symp. Ind. Electron., Buzios, 2015, pp. 665-668.
[11] L. Gyugyi, “Unified power-flow control concept for flexible AC transmission systems,” Proc. Inst. Elect. Eng. C, vol. 139, no. 4, pp. 323-331, 1992.
[12] J. Dixon, L. Moran, J. Rodriguez and R. Domke, “Reactive power compensation technologies: state-of-the-art review,” Proce. IEEE, vol. 93, no. 12, pp. 2144-2164, 2005.
[13] C. C. A. Rajan, A. Chodisetty, K. M. Raju and T. Srikumar, “Design and simulation of STATCOM to enhance the voltage stability of a wind power system,” 2015 International Conference on Electrical, Electronics, Signals, Commun. Optimiz., Visakhapatnam, 2015, pp. 1-4.
[14] S. Gautam, C. Pang and L. Yang, “Impacts of FACTS device on wind farm protection: Comparison between STATCOM and UPFC,” Proce. 7th Int. Conf. Inf. Autom. Sustain., Colombo, 2014, pp. 1-6.
[15] S. N. Singh and A. K. David, “Placement of FACTS devices in open power market,” Proce. Int. Conf. Adv. Power Syst. Control Oper. Manag., 2000, pp. 173-177 vol.1.
[16] N. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. New York, NY, USA: Wiley IEEE, 1999.
[17] Dinh-Nhon Truong, Van-Thuyen Ngo, “Designed damping controller for SSSC to improve stability of a hybrid offshore wind farms considering time delay,” Int. J. Electr. Power Energy Syst., vol. 65, pp. 425-431, 2015.
[18] S. Raphael, A. M. Massoud, “Static synchronous series compensator for low voltage ride through capability of wind energy systems,” Proce. Int. Conf. IET Renew. Power Gener., Edinburgh (UK), pp. 1-6, 2011.
[19] S. M. Abd Elazim, E. S. Ali, “Optimal SSSC design for damping power systems oscillations via Gravitational Search Algorithm”, Electr. Power Energy Syst., pp. 161-168, 2016.
[20] K. K. Sen, “SSSC-static synchronous series compensator: theory, modeling, and application,” IEEE Trans. Power Delivery, vol. 13, no. 1, pp. 241-246, 1998.
[21] N. Mohan, T. Undeland, and W. Robbins, “Power Electronics: Converters, Applications, and Design”. New York: Wiley, 2003.
[22] H. Akagi, E. H. Watanabe, M. Aredes. “Instantaneous power theory and applications to power conditioning” in IEEE Ind. Electron. Mag., vol. 1, no. 3, pp. 46-46, 2007.
[23] M. E. Adabi, A. Vahedi, “A survey of shaft voltage reduction strategies for induction generators in wind energy applications,” Renew. Energy, vol. 50, pp. 177-187, 2013.
[24] B. Ozpineci and L. M. Tolbert, “Simulink implementation of induction machine model–a modular approach,” Proce. Int. IEEE Conf. Electr. Mach. Drives, vol.2, pp. 728-734, 2003.
[25] MEA. Farrag, GA. Putrus, L Ran, “Design of fuzzy based-rules control system for the unified power flow controller,” Proce. IEEE, Piscataway, NJ, pp. 2102-2107.
[26] M. S. El Moursi, K. Goweily, J. L. Kirtley and M. Abdel-Rahman, “Application of series voltage boosting schemes for enhanced fault ride through performance of fixed speed wind turbines,” IEEE Trans. Power Delivery, vol. 29, no. 1, pp. 61-71, 2014
[27] M. Nasiri; J. Milimonfared; S. H. Fathi. “Efficient low-voltage ride-through nonlinear backstepping control strategy for PMSG-based wind turbine during the grid faults,” J. Oper. Autom. Power Eng., vol. 6, no. 2, pp. 218-228, 2018.
[28] N. Bigdeli; E. Ghanbaryan; K. Afshar. “Low frequency oscillations suppression via cpso based damping controller,” J. Oper. Autom. Power Eng., vol. 1, no. 1, pp. 22-32, 2007.