[1] B. Sheykhloei, T. Abedinzadeh, B. Mohammadi-ivatloo, and L. Mohammadianan, “Optimal co-scheduling of distributed generation resources and natural gas network considering uncertainties”, J. Energy Storage, vol. 21, pp. 383-392, 2019.
[2] C. Unsihuay-Vila et al., “A model to long-term, multiarea, multistage, and integrated expansion planning of electricity and natural gas systems”, IEEE Trans. Power Syst., vol. 25, pp. 1154-1168, 2010.
[3] Black and Veatch, “New England natural gas infrastructure and electric generation: Constraints and solutions,” New England States Committee Electr., 2013.
[4] Q. Jing et al., “Expansion co-planning for shale gas integration in a combined energy market”, J. Mod. Power Syst. Clean Energy, vol. 3, pp. 302-311, 2015.
[5] Y. Nie, M. Farrokhifar and D. Pozo, “Electricity and gas network expansion planning: An admm-based decomposition approach”, IEEE Power Tech, 2019.
[6] H. Branch, “Optimum network reconfiguration to improve power quality and reliability in distribution system”, Int. J. Grid Distrib. Comput., vol. 9, pp. 101-110, 2016.
[7] S. Halilˇcevi´c and I. Softi´c, “Degree of optimality as a measure of distance of power system operation from optimal operation”, J. Oper. Autom. Power Eng., vol. 6, pp. 69-79, 2018.
[8] R. Levitan, S. Wilmer and R. Carlson, “Pipeline to reliability: unraveling gas and electric interdependencies across the eastern interconnection”, IEEE Power Energy Mag., vol. 12, pp. 78-88, 2014.
[9] J. Rifkin, The third industrial revolution: how lateral power is transforming energy, the economy, and the world. Macmillan, 2011.
[10] P. Lund, J. Lindgren, J. Mikkola and J. Salpakari, “Review of energy system flexibility measures to enable high levels of variable renewable electricity”, Renewable Sustainable Energy Rev., vol. 45, pp. 785-807, 2015.
[11] Y. Li et al., “Optimal stochastic operation of integrated low-carbon electric power, natural gas, and heat delivery system”, IEEE Trans. Sustainable Energy, vol. 9, pp. 273-283, 2017.
[12] F. Sohrabi, F. Jabari, B. Mohammadi-Ivatloo and A. Soroudi, “Coordination of interdependent natural gas and electricity systems based on information gap decision theory”, IET Gener. Transm. Distrib., vol. 13, pp. 3362-69, 2019.
[13] C. He, L. Wu, T. Liu and M. Shahidehpour, “Robust co-optimization scheduling of electricity and natural gas systems via ADMM”, IEEE Trans. Sustainable Energy, vol. 8, pp. 658-670, 2016.
[14] V. Amir, S. Jadid and M. Ehsan, “Operation of multi carrier microgrid (MCMG) considering demand response”, J. Oper. Autom. Power Eng., vol. 7, pp. 119-128, 2019.
[15] F. Jabari et al., “Optimal short-term coordination of desalination, hydro and thermal units”, J. Oper. Autom. Power Eng., vol. 7, pp. 141-147, 2019.
[16] B. Faridpak, M. Farrokhifar, I. Murzakhanov and A. Safari, “A series multi-step approach for operation co-optimization of integrated power and natural gas systems”, Energy, pp. 117897, 2020.
[17] H. Latifi, M. Farrokhifar, A. Safari and S. Pournasir, “Optimal sizing of combined heat and power generation units using of MPSO in the BESAT industrial zone”, Int. J. Energy Stat., vol. 4, pp. 1650002, 2016.
[18] M. Farrokhifar, Y. Nie and D. Pozo, “Energy systems planning: A survey on models for integrated power and natural gas networks coordination”, Appl. Energy, vol. 262, pp. 114567, 2020.
[19] A. Conejo, M. Carri´on and J. Morales, Decision Making Under Uncertainty in Electricity Markets, ser. International Series in Operations Research Management Science.
[20] S. Moazeni, W. Powell and A. Hajimiragha, “Mean-conditional value-at-risk optimal energy storage operation in the presence of transaction costs”, IEEE Trans. Power Syst., vol. 30, pp. 1222-32, 2015.
[21] Y. Li et al., “Optimal operation strategy for integrated natural gas generating unit and power-to-gas conversion facilities”, IEEE Trans. Sustainable Energy, vol. 9, pp. 1870-1879, 2018.
[22] B. Faridpak, H. Gharibeh, M. Farrokhifar and D. Pozo, “Two-step LP approach for optimal placement and operation of EV charging stations”, IEEE PES Innovative Smart Grid Technol. Eur., 2019.
[23] Gams development corp, https://www.gams.com, accessed: 2019-08-30.
[24] J. Li, F. Lan and H. Wei, “A scenario optimal reduction method for wind power time series”, IEEE Trans. Power Syst., vol. 31, pp. 1657-58, 2015.
[25] A. Sawas, H. Khani and H. Farag, “On the resiliency of power and gas integration resources against cyber-attacks”, IEEE Trans. Ind. Inf., 2020.