[1] S. Haghbin, S. Lundmark, M. Alakula and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: Review and new solution”, IEEE Trans. Ind. Electron., vol. 60, pp. 459-73, 2012.
[2] M. Yilmaz and P.T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles”, IEEE Trans. Power Electron., vol. 28, pp. 2151-69, 2012.
[3] A. Khaligh and S. Dusmez, “Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles”, IEEE Trans. Veh. Technol., vol. 61, pp. 2475-89, 2012.
[4] S. Jeong et al., “Electrolytic capacitor-less single-power-conversion on-board charger with high efficiency”, IEEE Trans. Ind. Electron., vol. 63, pp. 7488-97, 2016.
[5] B. Whitaker et al., “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices”, IEEE Trans. Power Electron., vol. 29, pp. 2606-17, 2013.
[6] D. Gautam et al., “An automotive onboard 3.3-kW battery charger for PHEV application”, IEEE Trans. Veh. Technol., vol. 61, pp. 3466-74, 2012.
[7] S. Kim and F. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles”, IEEE Trans. Ind. Electron., vol. 62, pp. 3460-72, 2014.
[8] K. Yao, Y. Wang, J. Guo and K. Chen, “Critical conduction mode boost PFC converter with fixed switching frequency control”, IEEE Trans. Power Electron., vol. 33, pp. 6845-57, 2017.
[9] T. Mishima, K. Akamatsu and M. Nakaoka, “A high frequency-link secondary-side phase-shifted full-range soft-switching PWM DC–DC converter with ZCS active rectifier for EV battery chargers”, IEEE Trans. Power Electron., vol. 28, pp. 5758-73, 2013.
[10] M. Kwon and S. Choi, “An electrolytic capacitorless bidirectional EV charger for V2G and V2H application”, IEEE Trans. Power Electron., vol. 32, pp. 6792-9, 2016.
[11] K. Yoo, K. Kim and J. Lee, “Single-and three-phase PHEV onboard battery charger using small link capacitor”, IEEE Trans. Ind. Electron., vol. 60, pp. 3136-44, 2012.
[12] L. Wang, B. Zhang and D. Qiu, “A novel valley-fill single-stage boost-forward converter with optimized performance in universal-line range for dimmable LED lighting”, IEEE Trans. Ind. Electron., vol. 64, pp. 2770-8, 2016.
[13] Y. Wang et al., “A single-stage LED driver based on SEPIC and LLC circuits”, IEEE Trans. Ind. Electron., vol. 64, pp. 5766-76, 2016.
[14] G. Moschopoulos and P. Jain, “Single-phase single-stage power-factor-corrected converter topologies”, IEEE Trans. Ind. Electron., vol. 52, pp. 23-35, 2005.
[15] S. Li, J. Deng and C. Mi, “Single-stage resonant battery charger with inherent power factor correction for electric vehicles”, IEEE Trans. Veh. Technol., vol. 62, pp. 4336-44, 2013.
[16] J. Lee, Y. Yoon and J. Kang, “A single-phase battery charger design for LEV based on DC-SRC with resonant valley-fill circuit”, IEEE Trans. Ind. Electron., vol. 62, pp. 2195-205, 2014.
[17] N. Trong et al., “Modified current-fed full-bridge isolated power factor correction converter with low-voltage stress”, IET Power Electron., vol. 7, pp. 861-7, 2013.
[18] C. Li, Y. Zhang, Z. Cao and X. Dewei, “Single-phase single-stage isolated ZCS current-fed full-bridge converter for high-power AC/DC applications”, IEEE Trans. Power Electron., vol. 32, pp. 6800-12, 2016.
[19] S. Lee and H. Do, “Single-stage bridgeless AC–DC PFC converter using a lossless passive snubber and valley switching”, IEEE Trans. Ind. Electron., vol. 63, pp. 6055-63, 2016.
[20] W. Choi, “Single-stage battery charger without full-bridge diode rectifier for light electric vehicles”, Electron. Lett., vol. 47, pp. 617-8, 2011.
[21] W. Choi and J. Yoo, “A bridgeless single-stage half-bridge AC/DC converter”, IEEE Trans. Power Electron., vol. 26, pp. 3884-95, 2011.
[22] D. Gautam et al., “An automotive onboard 3.3-kW battery charger for PHEV application”, IEEE Trans. Veh. Technol., vol. 61, pp. 3466-74, 2012.
[23] P. Sinusoidal, “Non sinusoidal, balanced or unbalanced conditions”, IEEE Std., pp. 1459-2000, 2009.
[24] K. Kim et al., “Battery charging system for PHEV and EV using single phase AC/DC PWM buck converter”, IEEE Veh. Power Propul. Conf., 2010.
[25] M. Pahlevaninezhad et al., “A new control approach based on the differential flatness theory for an AC/DC converter used in electric vehicles”, IEEE Trans. Power Electron., vol. 27, pp. 2085-103, 2011.
[26] L. Huber, Y. Jang and M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers”, IEEE Trans. Power Electron., vol. 23, pp. 1381-90, 2008.
[27] R. Metidji, B. Metidji and B. Mendil, “Design and implementation of a unity power factor fuzzy battery charger using an ultrasparse matrix rectifier”, IEEE Trans. Power Electron., vol. 28, pp. 2269-76, 2012.
[28] X. Zhou et al., “Multi-function bi-directional battery charger for plug-in hybrid electric vehicle application”, IEEE Energy Convers. Congr. Exposition, 2009.
[29] D. Erb, O. Onar and A. Khaligh, “Bi-directional charging topologies for plug-in hybrid electric vehicles. In2010 Twenty-Fifth Annual”, IEEE Appl. Power Electron. Conf. Exposition, 2010.
[30] V. Monteiro et al., “Batteries charging systems for electric and plug-in hybrid electric vehicles”. New Adv. Veh. Technol. Autom. Eng., 2012.
[31] O. Onar, J. Kobayashi, D. Erb and A. Khaligh, “A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck–boost converter for PHEVs”, IEEE Trans. Veh. Technol., vol. 61, pp. 2018-32, 2012.
[32] Y. Lee, A. Khaligh and A. Emadi, “Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles”, IEEE Trans. Veh. Technol., vol. 58, pp. 3970-80, 2009.
[33] S. Kim, H. Song and K. Nam, “Idling port isolation control of three-port bidirectional converter for EVs”, IEEE Trans. Power Electron., vol. 27, pp. 2495-506, 2011.
[34] J. Pinto, V. Monteiro, H. Gonçalves and J. Afonso, “Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode”, IEEE Trans. Veh. Technol., vol. 63, pp. 1104-16, 2013.
[35] G. Choe et al., “A Bi-directional battery charger for electric vehicles using photovoltaic PCS systems”, IEEE Veh. Power Propul. Conf., 2010.
[36] P. Dahono, “A control method to damp oscillation in the input LC filter”, IEEE 33rd Annu. Power Electron. Specialists Conf., 2002.
[37] P. Dahono, Y. Bahar, Y. Sato and T. Kataoka, “Damping of transient oscillations on the output LC filter of PWM inverters by using a virtual resistor”, 4th IEEE Int. Conf. Power Electron. Drive Syst., 2001.
[38] A. Adapa and V. John, “Virtual resistor based active damping of LC filter in standalone voltage source inverter”, IEEE Appl. Power Electron. Conf. Exposition, 2018.
[39] U Erburu et al., “Parameter-independent control for battery chargers based on virtual impedance emulation”, IEEE Trans. Power Electron., vol. 33, pp. 8848-58, 2018.
[40] Y. Fu et al., “Imbalanced load regulation based on virtual resistance of a three-phase four-wire inverter for EV vehicle-to-home applications”, IEEE Trans. Transp. Electrif., vol. 5, pp. 162-73, 2018.
[41] A. Urtasun et al., “Parameter-independent battery control based on series and parallel impedance emulation”, IEEE Access, vol. 7, pp. 70021-31, 2019.