[1] M. Guacci et al., “Analysis and design of a 1200 V All-SiC planar interconnection power module for next generation more electrical aircraft power electronic building blocks”, CPSS Trans. Power Electron. App., vol. 2, pp. 320-330, 2017.
[2] F. Mohammadi et al., “Design of a single-phase transformerless grid-connected PV inverter considering reduced leakage current and LVRT grid codes”, J. Oper. Autom. Power Eng., vol. 9, pp. 49-59, 2021.
[3] M. Banaei, H. Bonab, and N. Kalantari, “Analysis and design of a new single switch non-isolated buck-boost dc-dc converter”, J. Oper. Autom. Power Eng., vol. 8, pp. 116-127, 2020.
[4] M. Farhadi-Kangarlu and F. Mohammadi, “Performance improvement of single-phase transformerless grid-connected PV inverters regarding common-mode voltage (CMV) and LVRT”, J. Oper. Autom. Power Eng., vol. 7, pp. 1-15, 2019.
[5] D. Han and B. Sarlioglu, “Comprehensive study of the performance of SiC MOSFET-based automotive DC–DC converter under the influence of parasitic inductance”, IEEE Trans. Ind. App., vol. 52, pp. 5100-11, 2016.
[6] I. Josifović, J. Popović-Gerber, and J. Ferreira, “Improving SiC JFET switching behavior under influence of circuit parasitics”, IEEE Trans. Power Electron., vol. 27, pp. 3843-3854, 2012.
[7] N. Oswald et al., “An experimental investigation of the tradeoff between switching losses and EMI generation with hard-switched all-Si, Si-SiC, and All-SiC device combinations”, IEEE Trans. Power Electron., vol. 29, pp. 2393-2407, 2014.
[8] F. Yang et al., “Electrical performance advancement in SiC power module package design with kelvin drain connection and low parasitic inductance”, IEEE J. Emerg. Sel. Top. Power Electron., vol.7, pp. 84-98, 2019.
[9] B. Touré et al., “EMC modeling of drives for aircraft applications: modeling process, EMI filter optimization, and technological choice”, IEEE Trans. Power Electron., vol. 28, pp. 1145-56, 2013.
[10] J. Borsalani, A. Dastfan, and J. Ghalibafan, “An integrated EMI choke with improved DM inductance”, IEEE Trans. Power Electron., vol. 36, pp. 1646-58, 2021.
[11] D. Boillat, F. Krismer, and J. Kolar, “EMI filter volume minimization of a three-phase, three-level T-Type PWM converter system”, IEEE Trans. Power Electron., vol. 32, pp. 2473-80, 2017.
[12] N. Bondarenkoet al., “A measurement-based model of the electromagnetic emissions from a power inverter”, IEEE Trans. Power Electron., vol. 30, pp. 5522-31, 2015.
[13] M. Vesali et al., “A new nonisolated soft switched DC-DC bidirectional converter with high conversion ratio and low voltage stress on the switches”, Int. Trans. Elect. Ener. Sys., vol. 31, 2021.
[14] M. Ando and K. Wada, “Design of acceptable stray inductance based on scaling method for power electronics circuits”, IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, pp. 568-575, 2017.
[15] Y. Ren et al., “Voltage suppression in wire-bond-based multichip phase-leg SiC MOSFET module using adjacent decoupling concept”, IEEE Trans. Ind. Electron., vol. 64, pp. 8235-8246, 2017.
[16] S. Ji et al., “Temperature-dependent characterization, modeling, and switching speed-limitation analysis of third-generation 10-kV SiC MOSFET”, IEEE Trans. Power Electron., vol. 33, pp. 4317-27, 2018.
[17] Y. Tang and H. Ma, “Dynamic electrothermal model of paralleled IGBT modules with unbalanced stray parameters”, IEEE Trans. Power Electron., vol. 32, pp. 1385-99, 2017.
[18] Z. Guoan and K. Cheng-Kok, “Exact closed-form formula for partial mutual inductances of rectangular conductors”, IEEE Trans. Cir. Sys. I: Fund. Theo. App., vol. 50, pp. 1349-52, 2003.
[19] C. Paul, “Inductance Loop and Partial”, Wiley, 2010.
[20] A. Ruehli, “Inductance calculations in a complex integrated circuit environment”, IBM J. Res. Devel., vol. 16, pp. 470-81, 1972.
[21] A. Matallana et al., “Analysis of impedance and current distributions in parallel IGBT design”, IEEE 26th Inter. Symp. Ind. Electron., pp. 616-621, 2017.
[22] I. Ndip et al., “Analytical models for calculating the inductances of bond wires in dependence on their shapes, bonding parameters, and materials”, IEEE Trans. Electromag. Comp., vol. 57, pp. 241-249, 2015.
[23] H. Gorginpour, “Analytical calculation of the equivalent circuit parameters of non-salient pole large synchronous generators”, J. Oper. Autom. Power Eng., vol. 9, pp. 172-181, 2021.
[24] A. Jørgensen et al, “A fast-switching integrated full-bridge power module based on GaN eHEMT devices”, IEEE Trans. Power Electron., vol. 34, pp. 2494-2504, 2019.
[25] Z. Miao, C. Wang, and K. Ngo, “Simulation and characterization of cross-turn-on inside a power module of paralleled SiC MOSFETs”, IEEE Trans. Compo. Pack. Manufac. Tech., vol. 7, pp. 186-192, 2017.
[26] A. Dutta and S. Ang, “Electromagnetic interference simulations for wide-bandgap power electronic modules”, IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, pp. 757-766, 2016.
[27] ANSYS Electronic Desktop Online Help, 2015.
[28] L. Jing et al., “An improved behavior model for IGBT modules driven by datasheet and measurement”, IEEE Trans. Elect. Dev., vol. 67, pp. 230-236, 2020.
[29] Z. Huibin, A. Hefner, and J. Lai, “Characterization of power electronics system interconnect parasitics using time domain reflectometry”, IEEE Trans. Power Electron., vol. 14, pp. 622-628, 1999.
[30] H. Iida, K. Hasegawa, and I. Omura, “Mutual inductance influence to switching speed and TDR measurements for separating self- and mutual inductances in the package”, 31st Int. Symp. Power Semic. Dev., pp. 503-506, 2019.
[31] K. Hasegawa, K. Wada, and I. Omura, “Mutual inductance measurement for power device package using time domain reflectometry”, IEEE Ener. Conv. Cong. Expo., 2016.
[32] L. Yang and W. Odendaal, “Measurement-based method to characterize parasitic parameters of the integrated power electronics modules”, IEEE Trans. Power Electron., vol. 22, pp. 54-62, 2007.
[33] Y. Mukunokiet al., “Modeling of a silicon-carbide MOSFET with focus on internal stray capacitances and inductances, and its verification”, IEEE Trans. Ind. App., vol. 54, pp. 2588-97, 2018.
[34] B. DeBoi et al., “Improved methodology for parasitic characterization of high-performance power modules”, IEEE Trans. Power Electron., vol. 35, pp. 13400-08, 2020.
[35] T. Liu, T. Wong, and Z. Shen, “A new characterization technique for extracting parasitic inductances of SiC power MOSFETs in discrete and module packages based on two-port s-parameters measurement”, IEEE Trans. Power Electron., vol. 33, pp. 9819-33, 2018.
[36] D. Dalal et al., “Impact of power module parasitic capacitances on medium-voltage SiC MOSFETs switching transients”, IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, pp. 298-310, 2020.
[37] I. Badstübner et al., “Highly accurate virtual dynamic characterization of discrete SiC power devices”, 29th Int. Symp. Power Semic. Dev., pp. 383-386, 2017.
[38] Y. Lobsiger and J. Kolar, “Closed-Loop di/dt and dv/dt IGBT Gate Driver”, IEEE Trans. Power Electron., vol. 30, pp. 3402-17, 2015.
[39] H. Daou et al., “Dynamic electric model for IGBT power module based on Q3D® and Simplorer®: 3D Layout design, stray inductance estimation, experimental verifications”, Int. Conf. Elec. Sys. Airc., Rail., Ship Prop. Road Veh. & Inter. Trans. Electrif. Conf, 2016.