Document Type : Research paper


Faculty of Electrical and Robotic Engineering, Shahrood University of Tech., Shahrood, Iran


The parasitic parameters of an IGBT power module cause various problems, especially for electromagnetic compatibility (EMC) concerns. The high-variations in voltage and current produced by the inductances/capacitances near switches in the transient process are the main sources of high-frequency electromagnetic interference (EMI). To overcome the problems, the parasitic parameters of the module should be accurately characterized. In this paper, a precise detailed model of a commercial half-bridge IGBT module is presented. It includes the parasitic inductances of leads, bond wires, DBC plates, and the parasitic capacitances of the module and IGBTs. The new simplified analytical equations to calculate the partial inductance and parasitic capacitance are proposed and compared with ANSYS Q3D results. To evaluate the accuracy of the model, all the parameters are also derived from a two-port measurement-based parasitic extraction method. The results show an acceptable match between the simulated and experimental values. Finally, the proposed model is implemented by state-space dynamic coupling in ANSYS Simplorer circuit simulator, and a double-pulse test circuit is used to verify the model. By comparing the simulated current and voltage waveforms with experiment, it is proved that the proposed model is applicable to simulate the switching transients for EMC study.


[1]    M. Guacci et al., “Analysis and design of a 1200 V All-SiC planar interconnection power module for next generation more electrical aircraft power electronic building blocks”, CPSS Trans. Power Electron. App., vol. 2, pp. 320-330, 2017.
[2]    F. Mohammadi et al., “Design of a single-phase transformerless grid-connected PV inverter ‎considering reduced leakage current and LVRT grid codes”, J. Oper. Autom. Power Eng., vol. 9, pp. 49-59, 2021.
[3]    M. Banaei, H. Bonab, and N. Kalantari, “Analysis and design of a new single switch non-isolated buck-boost dc-dc converter”, J. Oper. Autom. Power Eng., vol. 8, pp. 116-127, 2020.
[4]    M. Farhadi-Kangarlu and F. Mohammadi, “Performance improvement of single-phase transformerless grid-connected PV inverters regarding common-mode voltage (CMV) and LVRT”, J. Oper. Autom. Power Eng., vol. 7, pp. 1-15, 2019.
[5]    D. Han and B. Sarlioglu, “Comprehensive study of the performance of SiC MOSFET-based automotive DC–DC converter under the influence of parasitic inductance”, IEEE Trans. Ind. App., vol. 52, pp. 5100-11, 2016.
[6]    I. Josifović, J. Popović-Gerber, and J. Ferreira, “Improving SiC JFET switching behavior under influence of circuit parasitics”, IEEE Trans. Power Electron., vol. 27, pp. 3843-3854, 2012.
[7]    N. Oswald et al., “An experimental investigation of the tradeoff between switching losses and EMI generation with hard-switched all-Si, Si-SiC, and All-SiC device combinations”, IEEE Trans. Power Electron., vol. 29, pp. 2393-2407, 2014.
[8]    F. Yang et al., “Electrical performance advancement in SiC power module package design with kelvin drain connection and low parasitic inductance”, IEEE J. Emerg. Sel. Top. Power Electron., vol.7, pp. 84-98, 2019.
[9]    B. Touré et al., “EMC modeling of drives for aircraft applications: modeling process, EMI filter optimization, and technological choice”, IEEE Trans. Power Electron., vol. 28, pp. 1145-56, 2013.
[10]    J. Borsalani, A. Dastfan, and J. Ghalibafan, “An integrated EMI choke with improved DM inductance”, IEEE Trans. Power Electron., vol. 36, pp. 1646-58, 2021.
[11]    D. Boillat, F. Krismer, and J. Kolar, “EMI filter volume minimization of a three-phase, three-level T-Type PWM converter system”, IEEE Trans. Power Electron., vol. 32, pp. 2473-80, 2017.
[12]    N. Bondarenkoet al., “A measurement-based model of the electromagnetic emissions from a power inverter”, IEEE Trans. Power Electron., vol. 30, pp. 5522-31, 2015.
[13]    M. Vesali et al., “A new nonisolated soft switched DC-DC bidirectional converter with high conversion ratio and low voltage stress on the switches”, Int. Trans. Elect. Ener. Sys., vol. 31, 2021.
[14]    M. Ando and K. Wada, “Design of acceptable stray inductance based on scaling method for power electronics circuits”, IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, pp. 568-575, 2017.
[15]    Y. Ren et al., “Voltage suppression in wire-bond-based multichip phase-leg SiC MOSFET module using adjacent decoupling concept”, IEEE Trans. Ind. Electron., vol. 64, pp. 8235-8246, 2017.
[16]    S. Ji et al., “Temperature-dependent characterization, modeling, and switching speed-limitation analysis of third-generation 10-kV SiC MOSFET”, IEEE Trans. Power Electron., vol. 33, pp. 4317-27, 2018.
[17]    Y. Tang and H. Ma, “Dynamic electrothermal model of paralleled IGBT modules with unbalanced stray parameters”, IEEE Trans. Power Electron., vol. 32, pp. 1385-99, 2017.
[18]    Z. Guoan and K. Cheng-Kok, “Exact closed-form formula for partial mutual inductances of rectangular conductors”, IEEE Trans. Cir. Sys. I: Fund. Theo. App., vol. 50, pp. 1349-52, 2003.
[19]    C. Paul, “Inductance Loop and Partial”, Wiley, 2010.
[20]    A. Ruehli, “Inductance calculations in a complex integrated circuit environment”, IBM J. Res. Devel., vol. 16, pp. 470-81, 1972.
[21]    A. Matallana et al., “Analysis of impedance and current distributions in parallel IGBT design”, IEEE 26th Inter. Symp. Ind. Electron., pp. 616-621, 2017.
[22]    I. Ndip et al., “Analytical models for calculating the inductances of bond wires in dependence on their shapes, bonding parameters, and materials”, IEEE Trans. Electromag. Comp., vol. 57, pp. 241-249, 2015.
[23]    H. Gorginpour, “Analytical calculation of the equivalent circuit parameters of non-salient pole ‎large synchronous generators”, J. Oper. Autom. Power Eng., vol. 9, pp. 172-181, 2021.
[24]    A. Jørgensen et al, “A fast-switching integrated full-bridge power module based on GaN eHEMT devices”, IEEE Trans. Power Electron., vol. 34, pp. 2494-2504, 2019.
[25]    Z. Miao, C. Wang, and K. Ngo, “Simulation and characterization of cross-turn-on inside a power module of paralleled SiC MOSFETs”, IEEE Trans. Compo. Pack. Manufac. Tech., vol. 7, pp. 186-192, 2017.
[26]    A. Dutta and S. Ang, “Electromagnetic interference simulations for wide-bandgap power electronic modules”, IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, pp. 757-766, 2016.
[27]    ANSYS Electronic Desktop Online Help, 2015.
[28]    L. Jing et al., “An improved behavior model for IGBT modules driven by datasheet and measurement”, IEEE Trans. Elect. Dev., vol. 67, pp. 230-236, 2020.
[29]    Z. Huibin, A. Hefner, and J. Lai, “Characterization of power electronics system interconnect parasitics using time domain reflectometry”, IEEE Trans. Power Electron., vol. 14, pp. 622-628, 1999.
[30]    H. Iida, K. Hasegawa, and I. Omura, “Mutual inductance influence to switching speed and TDR measurements for separating self- and mutual inductances in the package”, 31st Int. Symp. Power Semic. Dev., pp. 503-506, 2019.
[31]    K. Hasegawa, K. Wada, and I. Omura, “Mutual inductance measurement for power device package using time domain reflectometry”, IEEE Ener. Conv. Cong. Expo., 2016.
[32]    L. Yang and W. Odendaal, “Measurement-based method to characterize parasitic parameters of the integrated power electronics modules”, IEEE Trans. Power Electron., vol. 22, pp. 54-62, 2007.
[33]    Y. Mukunokiet al., “Modeling of a silicon-carbide MOSFET with focus on internal stray capacitances and inductances, and its verification”, IEEE Trans. Ind. App., vol. 54, pp. 2588-97, 2018.
[34]    B. DeBoi et al., “Improved methodology for parasitic characterization of high-performance power modules”, IEEE Trans. Power Electron., vol. 35, pp. 13400-08, 2020.
[35]    T. Liu, T. Wong, and Z. Shen, “A new characterization technique for extracting parasitic inductances of SiC power MOSFETs in discrete and module packages based on two-port s-parameters measurement”, IEEE Trans. Power Electron., vol. 33, pp. 9819-33, 2018.
[36]    D. Dalal et al., “Impact of power module parasitic capacitances on medium-voltage SiC MOSFETs switching transients”, IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, pp. 298-310, 2020.
[37]    I. Badstübner et al., “Highly accurate virtual dynamic characterization of discrete SiC power devices”, 29th Int. Symp. Power Semic. Dev., pp. 383-386, 2017.
[38]    Y. Lobsiger and J. Kolar, “Closed-Loop di/dt and dv/dt IGBT Gate Driver”, IEEE Trans. Power Electron., vol. 30, pp. 3402-17, 2015.
[39]    H. Daou et al., “Dynamic electric model for IGBT power module based on Q3D® and Simplorer®: 3D Layout design, stray inductance estimation, experimental verifications”, Int. Conf. Elec. Sys. Airc., Rail., Ship Prop. Road Veh. & Inter. Trans. Electrif. Conf, 2016.