[1] H. Moayedirad, S. Nejad, “Increasing the efficiency of the power electronic converter for a proposed dual stator winding squirrel-cage induction motor drive using a five-leg inverter at low speeds”, J. Oper. Autom. Power Eng., vol. 6, pp. 23-39, 2018.
[2] M. Bigdeli, D. Azizian, E. Rahimpour, “An improved big bang-big crunch algorithm for estimating three-phase induction motors efficiency”, J. Oper. Autom. Power Eng., vol. 4, pp. 83-92, 2016.
[3] M. Hannan et al., “Optimization techniques to enhance the performance of induction motor drives: A review”, Renew. Sustain. Energy Rev., vol. 81, pp. 1611-26, 2018.
[4] M. Jannati et al., “A review on variable speed control techniques for efficient control of single-phase induction motors: evolution, classification, comparison”, Renew. Sustain. Energy Rev., vol. 75, pp. 1306-19, 2017.
[5] A. Datta, G. Poddar, “Improved low-frequency operation of hybrid inverter for medium-voltage induction motor drive under v/f and vector control mode of operation”, IEEE J. Emerg. Selected Top. Power Electron., vol. 8, pp. 1248-57, 2019.
[6] M. Benbouzid, D. Diallo, M. Zeraoulia, “Advanced fault-tolerant control of induction-motor drives for EV/HEV traction applications: From conventional to modern and intelligent control techniques”, IEEE Trans. Veh. Tech., vol. 56, pp. 519-28, 2007.
[7] S. Nagarajan, S. Reddy, “Digital simulation of fault tolerant inverter fed induction motor with a leg swap module”, Majlesi J. Electr. Eng., vol. 6, pp. 38, 2012.
[8] R. Ribeiro et al., “Fault-tolerant voltage-fed PWM inverter AC motor drive systems”, IEEE Trans. Power Electron., vol. 51, pp. 439-46, 2004.
[9] D. Delgado, D. Espinoza-Trejo, E. Palacios, “Fault-tolerant control in variable speed drives: a survey”, IET Electr. Power Appl., vol. 2, pp. 121-14, 2008.
[10] A. Raisemche et al., “Two active fault-tolerant control schemes of induction-motor drive in EV or HEV”, IEEE Trans. Veh. Tech., vol. 63, pp. 19-29, 2014.
[11] A. Ahmed, B. Mirafzal, N. Demerdash, “A fault tolerant technique for Δ-connected ac motor–drive systems”, IEEE Trans. Energy Conv., vol. 26., pp. 646-53, 2011.
[12] S. Kim, J. Seok, “ High-frequency signal injection-based rotor bar fault detection of inverter-fed induction motors with closed rotor slots”, IEEE Trans. Ind. Appl., vol. 47, pp. 1624-31, 2011.
[13] D. Kastha, B. Bose, “ Fault mode single-phase operation of a variable frequency induction motor drive and improvement of pulsating torque characteristics”, IEEE Trans. Ind. Electron., vol. 41, pp. 426-33, 1994.
[14] A. Ahmed, N. Demerdash, “Control of open-loop PWM delta-connected motor-drive systems under one phase failure condition”, J. Power Electron., vol. 11, pp. 824-36, 2011.
[15] A. Ahmed, N. Demerdash, “Fault-tolerant operation of delta-connected scalar-and vector-controlled AC motor drives”, IEEE Trans. Power Electron., vol. 27, pp. 3041-49, 2012.
[16] Y. Zhao, T. Lipo, “An approach to modeling and field-oriented control of a three phase induction machine with structural unbalance”, IEEE-APEC Conf., 1996.
[17] M. Jannati, N. Idris, M. Aziz, “Vector control of star-connected 3-phase induction motor drives under open-phase fault based on rotor flux field-oriented control”, Electr. Power Comp. Syst., vol. 44, pp. 2325-37, 2016.
[18] M. Jannati et al., “Experimental evaluation of FOC of 3-phase IM under open-phase fault”, Int. J. Electron., vol. 104, pp. 1675-88, 2017.
[19] R. Tabasian et al., “A novel direct field-oriented control strategy for fault-tolerant control of induction machine drives based on EKF”, IET Electr. Power Appl., 2021.
[20] M. Jannati, N. Idris, M. Aziz, “Indirect rotor field-oriented control of fault-tolerant drive system for three-phase induction motor with rotor resistance estimation using EKF”, TELKOMNIKA Indonesian J. Electr. Eng., vol. 12, pp. 6633-43, 2014.
[21] M. Nikpayam et al., “Fault-tolerant control of Y-connected three-phase induction motor drives without speed measurement”, Measuremen, vol. 149, pp. 106993, 2020.
[22] R. Tabasian, M. Ghanbari, M. Jannati, “A simple method for vector control of 3-phase induction motor under open-phase fault for electric vehicle applications”, J. Appl. Dynamic Syst. Control, vol. 1, pp. 1-9, 2018.
[23] M. Jannati, N. Idris, M. Aziz, “Performance evaluation of the field-oriented control of star-connected 3-phase induction motor drives under stator winding open-circuit faults”, J. Power Electron., vol. 16, pp.982-93, 2016.
[24] M. Nikpayam et al., “An optimized vector control strategy for induction machines during open-phase failure condition using particle swarm optimization algorithm”, Int. Trans. Electr. Energy Syst., vol. 30, pp.12669, 2020.
[25] H. Abbasi et al., “IRFOC of induction motor drives under open-phase fault using balanced and unbalanced transformation matrices”, IEEE Trans. Ind. Electron., 2020.
[26] B. Welchko et al., “Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations”, IEEE Trans. Power Electron., vol. 19, pp. 1108-16, 2004.
[27] R. Tabasian et al., “Control of three-phase induction machine drives during open-circuit fault: A review”, IETE J. Res., 2020.
[28] M. Tousizadeh et al., “Performance comparison of fault-tolerant three-phase induction motor drives considering current and voltage limits”, IEEE Trans. Ind. Electron., vol. 66, pp. 2639-48, 2018.
[29] M. Jannati, N. Idris, Z. Salam, “A new method for modeling and vector control of unbalanced induction motors”, IEEE Energy Conv. Congr. Expos., 2012.