Document Type : Research paper

Authors

1 Energy Management Research Center, University of Mohaghegh Ardabili, Ardabil, Iran.

2 The National University of Science and Technology Politehnica Bucharest, Pitești, University Centre, 110040 Pitesti, Romania.

Abstract

This research introduces a modified design for non-isolated DC-DC converters with a high voltage gain using the design concepts of a coupled inductor (CI) and a hybrid voltage multiplier cell. It is attainable to further increase the output gain without requiring a higher duty cycle or a large turn ratio of CI. This means that the power switch won't be under too much voltage stress. The suggested converter's important features are low maximum voltage across all semiconductor components, considerable efficiency, and a substantial voltage conversion ratio. In addition, the suggested topology includes diodes with soft switching conditions, which allows for a reduction in reverse recovery losses and an improvement in system efficiency. The proposed topology includes input current continuity, a single power switch, and a common ground between the source and the load. Operating analysis, theoretical definitions, efficiency investigation, and a literature review of comparable structures have been considered to demonstrate the proposed structure's functionality. An experimental prototype has also been established, featuring 115V output voltage, 20V input voltage, and 40kHz switching frequency, to facilitate the assessment of the proposed converter's efficacy.

Keywords

Main Subjects

  1. R. Mohajery, H. Shayeghi, F. Sedaghati, A. Bahador, and N. Bizon, “A modified configuration of high step-up nonisolated dc-dc converter with low voltage stress: Analysis, design, and implementation,” Int. J. Circuit Theory Appl., vol. 51, no. 9, pp. 4178–4201, 2023.
  2. H. Shayeghi, R. Mohajery, M. Hosseinpour, F. Sedaghti, and N. Bizon, “A transformer-less high voltage gain dc-dc converter based on cuk converter and voltage-lift technique,” J. Energy Manage. Technol., vol. 8, no. 1, pp. 23–34, 2024.
  3. A. Yaqoub Hamza and F. Jumaa, “A new transformerless dc-dc converter for renewable energy applications,” J. Oper. Autom. Power Eng., vol. 12, no. 1, pp. 35–41, 2024.
  4. Y. He, X. Sun, S. Liu, and N. Wang, “High step-up dc–dc converter using coupled inductor voltage multiplier cell and differential connection method,” IET Power Electron., vol. 16, no. 4, pp. 542–557, 2023.
  5. M. Banaei, H. Ajdar Faeghi Bonab, and N. Taghizadegan Kalantari, “Analysis and design of a new single switch non-isolated buck-boost dc-dc converter,” J. Oper. Autom. Power Eng., vol. 8, no. 2, pp. 116–127, 2020.
  6. M.-K. Nguyen, T.-D. Duong, Y.-C. Lim, and Y.-J. Kim, “Isolated boost dc–dc converter with three switches,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1389–1398, 2017.
  7. P. Khademi Astaneh, J. Javidan, K. Valipour, and A. Akbarimajd, “High gain multi-input dc-dc converter with combined phase-shift/pwm modulation for stand-alone applications,” J. Oper. Autom. Power Eng., vol. 7, no. 1, pp. 49–57, 2019.
  8. X. Hu, B. Gao, Y. Huang, and H. Chen, “Novel single switch dc-dc converter for high step-up conversion ratio,” J. Power Electron., vol. 18, no. 3, pp. 662–671, 2018.
  9. S.M. Ilman, F. A. S. Putra, and M. S. H. Daulay, “Design and simulation of a cascade boost dc-dc converter as a single-phase inverter power supply,” Fidelity: J. Teknik Elektr., vol. 6, no. 1, pp. 42–52, 2024.
  10. X. Hu, X. Liu, P. Ma, and S. Jiang, “An ultrahigh voltage gain hybrid-connected boost converter with ultralow distributed voltage stress,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10385–10395, 2020.
  11. H. Tarzamni, H. S. Gohari, M. Sabahi, and J. Kyyrä, “Nonisolated high step-up dc-dc converters: comparative review and metrics applicability,” IEEE Trans. Power Electron., 2023.
  12. M. F. Akhtar, S. R. S. Raihan, N. A. Rahim, M. N. Akhtar, and E. Abu Bakar, “Recent developments in dc-dc converter topologies for light electric vehicle charging: a critical review,” Appl. Sci., vol. 13, no. 3, p. 1676, 2023.
  13. A. Alzahrani, M. Ferdowsi, and P. Shamsi, “High-voltagegain dc–dc step-up converter with bifold dickson voltage multiplier cells,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 9732–9742, 2019.
  14. A. M. S. S. Andrade, L. Schuch, and M. L. da Silva Martins, “Analysis and design of high-efficiency hybrid high step-up dc–dc converter for distributed pv generation systems,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3860–3868, 2018.
  15. W. Hassan, D. D.-C. Lu, and W. Xiao, “Single-switch high step-up dc–dc converter with low and steady switch voltage stress,” IEEE Trans. Ind. Electron., vol. 66, no. 12, pp. 9326–9338, 2019.
  16. Z. Saadatizadeh, P. Chavoshipour Heris, M. Sabahi, M. Tarafdar Hagh, and M. Maalandish, “A new nonisolated free ripple input current bidirectional dc-dc converter with capability of zero voltage switching,” Int. J. Circuit Theory Appl., vol. 46, no. 3, pp. 519–542, 2018.
  17. M. Zamani, A. Aghaie, A. Zamani, R. Tari, M. Abarzadeh, and S. H. Hosseini, “Design and implementation of nonisolated high step-up dc-dc converter,” Int. Trans. Electr. Energy Syst., vol. 2023, no. 1, p. 4016996, 2023.
  18. A. Asghari and Z. J. Yegane, “A high step-up dc–dc converter with high voltage gain and zero-voltage transition,” IEEE Trans. Ind. Electron., 2023.
  19. H. Shayeghi, R. Mohajery, and N. Bizon, “Optimal design of a hybrid controller for dc-dc buck converter,” in 2023 15th Int. Conf. Electron. Comput. Artif. Int., pp. 01–06, IEEE, 2023.
  20. H. Shayeghi, R. Mohajery, N. Bizon, P. Thounthong, and N. Takorabet, “Implementation of pd-pi controller for boost converter using gwo algorithm,” in 2022 14th Int. Conf. Electron. Comput. Artif. Intell., pp. 1–7, IEEE, 2022.
  21. S.-W. Lee and H.-L. Do, “High step-up coupled-inductor cascade boost dc–dc converter with lossless passive snubber,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 7753–7761, 2018.
  22. K.-C. Tseng, C.-C. Huang, and C.-A. Cheng, “A high step-up converter with voltage-multiplier modules for sustainable energy applications,” IEEE J. Emerging Sel. Top. Power Electron., vol. 3, no. 4, pp. 1100–1108, 2015.
  23. V. F. Pires, A. Cordeiro, D. Foito, and J. F. Silva, “High step-up dc–dc converter for fuel cell vehicles based on merged quadratic boost–cuk,”´ IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7521–7530, 2019.
  24. [24]    M. Hosseinpour, M. Ahmadi, A. Seifi, and S. R. MousaviAghdam, “A new transformerless semi-quadratic buck–boost converter based on combination of cuk and traditional buck–boost converters,” Int. J. Circuit Theory Appl., vol. 50, no. 11, pp. 3926–3948, 2022.
  25. G. Li, X. Jin, X. Chen, and X. Mu, “A novel quadratic boost converter with low inductor currents,” CPSS Trans. Power Electron. Appl., vol. 5, no. 1, pp. 1–10, 2020.
  26. S.-M. Chen, M.-L. Lao, Y.-H. Hsieh, T.-J. Liang, and K.-H. Chen, “A novel switched-coupled-inductor dc–dc step-up converter and its derivatives,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 309–314, 2014.
  27. T.-J. Liang, J.-H. Lee, S.-M. Chen, J.-F. Chen, and L.-S. Yang, “Novel isolated high-step-up dc–dc converter with voltage lift,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1483–1491, 2011.