[1] A. Lesnicar and R. Marquardt, “New Concept for High Voltage – Modular Multilevel Converter,” Proc. Int. Power Electr. Conf., pp. 1-7, 2010.
[2] A. Lesnicar and R. Marquardt, “An innovative modular multilevel converter topology suitable for a wide power range,” Proc. IEEE Power Tech. Conf. vol. 3, pp. 272-277, 2003.
[3] S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, “Operation, control, and applications of the modular multilevel converter: A review,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 37-53, 2015.
[4] E. Seifi Najmi, A. Ajami, and A. H. Rajaei, “A generalized modular multilevel current source inverter,” J. Oper. Autom. Power Eng., vol. 5, no. 2, pp. 181-190, 2017.
[5] A. Nami, J. Liang, F. Dijkhuizen, and G. D. Demetriades, “Modular multilevel converters for HVDC applications: Review on converter cells and functionalities,” IEEE Trans. Power Electron., vol. 30, no. 1. pp. 18-36, 2015.
[6] S. Allebrod, R. Hamerski, and R. Marquardt, “New transformerless, scalable modular multilevel converters for HVDC-transmission,” Proc. IEEE Annu. Power Electron. Specialists Conf., pp. 174-179, 2008.
[7] B. D. Gemmell, J. Dorn, D. Retzmann, and D. Soerangr, “Prospects of multilevel VSC Technologies for power transmission,” Proc. IEEE PES Powering Toward Future Trans. Distrib. Exposition Conf., pp. 116, 2008.
[8] H. Akagi, S. Inoue, and T. Yoshii, “Control and performance of a transformer less cascade PWM STATCOM with star configuration,” IEEE Trans. Ind. Appl., vol. 43, no. 4, pp. 1041-1049, 2007.
[9] Q. Hao, J. Man, F. Gao, and M. Guan, “Voltage limit control of modular multilevel converter based unified power flow controller under unbalanced grid conditions,” IEEE Trans. Power Deliv., vol. 33, no. 3, pp. 1319-1327, 2018.
[10] B. Novakovic and A. Nasiri, “Modular multilevel converter for wind energy storage applications,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 8867-8876, 2017.
[11] M. Farhadi Kangarlu, E. Babaei, and F. Blaabjerg, “An LCL-filtered single-phase multilevel inverter for grid integration of PV systems,” J. Oper. Autom. Power Eng., vol. 4, no. 1, pp. 54-65, 2016.
[12] B. Li, S. Zhou, D. Xu, S. J. Finney, and B. W. Williams, “A hybrid modular multilevel converter for medium-voltage variable-speed motor drives,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4619-4630, 2017.
[13] M. Mehrasa, E. Pouresmaeil, S. Zabihi, and J. P. S. Catalão, “Dynamic model, control and stability analysis of MMC in HVDC transmission systems,” IEEE Trans. Power Deliv., vol. 32, no. 3, pp. 1471-1482, 2017.
[14] M. Lu, J. Hu, L. Lin, and K. Xu, “Zero DC voltage ride through of a hybrid modular multilevel converter in HVDC systems,” IET Renew. Power Gener., vol. 11, no. 1, pp. 35-43, 2017.
[15] L. Tang and B. T. Ooi, “Locating and isolating DC faults in multi-terminal DC systems,” IEEE Trans. Power Deliv., vol. 22, no. 3, pp. 1877-1884, 2007.
[16] A. J. Watson, E. K. Amankwah, and J. C. Clare, “Operation of a hybrid modular multilevel converter during grid voltage unbalance,” IET Gener. Transm. Distrib., vol. 10, no. 12, pp. 3102-3110, 2016.
[17] R. Zeng, L. Xu, L. Yao, and B. W. Williams, “Design and operation of a hybrid modular multilevel converter,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1137-1146, 2015.
[18] S. Lu, L. Yuan, K. Li, and Z. Zhao, “An improved phase-shifted carrier modulation scheme for a hybrid modular multilevel converter,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 81-97, 2017.
[19] R. Alaei, “Modular multilevel converters for power transmission systems,” Ph.D. dissertation, Dept. Elect. Comput. Eng., University of Alberta, Alberta, Canada, 2017.
[20] P. M. Meshram and V. B. Borghate, “A simplified nearest level control (NLC) voltage balancing method for modular multilevel converter (MMC),” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 450-462, 2015.
[21] S. Rohner, S. Bernet, M. Hiller, and R. Sommer, “Modulation, losses, and semiconductor requirements of modular multilevel converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2633-2642, 2010.
[22] A. Dekka, B. Wu, R. L. Fuentes, M. Perez, and N. R. Zargari, “Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 4, pp. 1631-1656, 2017.
[23] S. Kouro et al., “Recent advances and industrial applications of multilevel converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553-2580, 2010.
[24] R. Darus, G. Konstantinou, J. Pou, S. Ceballos, and V. G. Agelidis, “Comparison of phase-shifted and level-shifted PWM in the modular multilevel converter,” Proc. Int. Power Electron. Conf., pp. 3764-3770, 2014.
[25] B. Li, R. Yang, D. Xu, G. Wang, W. Wang, and D. Xu, “Analysis of the phase-shifted carrier modulation for modular multilevel converters,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 297-310, 2015.
[26] S. Cui, S. Kim, J. J. Jung, and S. K. Sul, “Principle, control and comparison of modular multilevel converters (MMCs) with DC short circuit fault ride-through capability,” Proc. IEEE Appl. Power Electron. Conf. Expos., pp. 610-616, 2014.
[27] G. Bergna et al., “Mitigating DC-side power oscillations and negative sequence load currents in modular multilevel converters under unbalanced faults-first approach using resonant PI,” Proc. Ind. Electron.Conf., pp. 537-542, 2012.
[28] D. G. Holmes and T. A. Lipo, Pulse width modulation for power converters: principles and practice. vol. 18. John Wiley & Sons, 2003, pp. 215-258.
[29] D. G. Holmes and B. P. McGrath, “Opportunities for harmonic cancellation with carrier-based PWM for two-level and multilevel cascaded inverters,” IEEE Trans. Ind. Appl., vol. 37, no. 2, pp. 574-582, 2001.
[30] R. Marquardt, A. Lesnicar, and J. Hildinger, “Modulares Stromrichterkonzept fur Netzkupplungsanwendungen bei hohen Spannungen,” Proc. ETG-Fachtagung, Bad Nauheim, Germany, pp. 1-7, 2004.
[31] B. Alamri and M. Darwish, “Precise modelling of switching and conduction losses in cascaded h-bridge multilevel inverters,” Proc. 49th Int. Universities Power Eng. Conf., pp. 1-6, 2014.