Document Type : Research paper


1 University of Mohaghegh Ardabili

2 Department of Electrical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran


Recently, hybrid modular multi-level converters, which are configured as full and half bridge sub-modules, are developed and utilized in the wide area of applications. Compared to its non-hybrid counterpart, these converters have several advantages such as the ability to nullify the DC side fault current and controlling AC side reactive power during the faults. This paper proposes a modified phase shifted PWM method (PS-PWM) which uses a combination of an improved PS-PWM with cancelled mismatch pulses and a third harmonic injection method. The proposed method not only reduces output voltage harmonic content and uneven loss distribution between sub-modules but also extends the linear operating range of the inverter, which improves the DC bus utilization. The mathematical analysis is derived for the proposed method and in order to study the efficiency of the system using the proposed method, the loss calculation has been done and compared with traditional PS-PWM method. Simulation results in Matlab/Simulink show the suitable performance of the presented scheme.


Main Subjects

[1]    A. Lesnicar and R. Marquardt, “New Concept for High Voltage – Modular Multilevel Converter,” Proc. Int. Power Electr. Conf., pp. 1-7, 2010.
[2]    A. Lesnicar and R. Marquardt, “An innovative modular multilevel converter topology suitable for a wide power range,” Proc. IEEE Power Tech. Conf. vol. 3, pp. 272-277, 2003.
[3]    S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, “Operation, control, and applications of the modular multilevel converter: A review,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 37-53, 2015.
[4]    E. Seifi Najmi, A. Ajami, and A. H. Rajaei, “A generalized modular multilevel current source inverter,” J. Oper. Autom. Power Eng., vol. 5, no. 2, pp. 181-190, 2017.
[5]    A. Nami, J. Liang, F. Dijkhuizen, and G. D. Demetriades, “Modular multilevel converters for HVDC applications: Review on converter cells and functionalities,” IEEE Trans. Power Electron., vol. 30, no. 1. pp. 18-36, 2015.
[6]    S. Allebrod, R. Hamerski, and R. Marquardt, “New transformerless, scalable modular multilevel converters for HVDC-transmission,” Proc. IEEE Annu. Power Electron. Specialists Conf., pp. 174-179, 2008.
[7]    B. D. Gemmell, J. Dorn, D. Retzmann, and D. Soerangr, “Prospects of multilevel VSC Technologies for power transmission,” Proc. IEEE PES Powering Toward Future Trans. Distrib. Exposition Conf., pp. 116, 2008.
[8]    H. Akagi, S. Inoue, and T. Yoshii, “Control and performance of a transformer less cascade PWM STATCOM with star configuration,” IEEE Trans. Ind. Appl., vol. 43, no. 4, pp. 1041-1049, 2007.
[9]    Q. Hao, J. Man, F. Gao, and M. Guan, “Voltage limit control of modular multilevel converter based unified power flow controller under unbalanced grid conditions,” IEEE Trans. Power Deliv., vol. 33, no. 3, pp. 1319-1327, 2018.
[10]  B. Novakovic and A. Nasiri, “Modular multilevel converter for wind energy storage applications,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 8867-8876, 2017.
[11]  M. Farhadi Kangarlu, E. Babaei, and F. Blaabjerg, “An LCL-filtered single-phase multilevel inverter for grid integration of PV systems,” J. Oper. Autom. Power Eng., vol. 4, no. 1, pp. 54-65, 2016.
[12]  B. Li, S. Zhou, D. Xu, S. J. Finney, and B. W. Williams, “A hybrid modular multilevel converter for medium-voltage variable-speed motor drives,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4619-4630, 2017.
[13]  M. Mehrasa, E. Pouresmaeil, S. Zabihi, and J. P. S. Catalão, “Dynamic model, control and stability analysis of MMC in HVDC transmission systems,” IEEE Trans. Power Deliv., vol. 32, no. 3, pp. 1471-1482, 2017.
[14]  M. Lu, J. Hu, L. Lin, and K. Xu, “Zero DC voltage ride through of a hybrid modular multilevel converter in HVDC systems,” IET Renew. Power Gener., vol. 11, no. 1, pp. 35-43, 2017.
[15]  L. Tang and B. T. Ooi, “Locating and isolating DC faults in multi-terminal DC systems,” IEEE Trans. Power Deliv., vol. 22, no. 3, pp. 1877-1884, 2007.
[16]  A. J. Watson, E. K. Amankwah, and J. C. Clare, “Operation of a hybrid modular multilevel converter during grid voltage unbalance,” IET Gener. Transm. Distrib., vol. 10, no. 12, pp. 3102-3110, 2016.
[17]  R. Zeng, L. Xu, L. Yao, and B. W. Williams, “Design and operation of a hybrid modular multilevel converter,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1137-1146, 2015.
[18]  S. Lu, L. Yuan, K. Li, and Z. Zhao, “An improved phase-shifted carrier modulation scheme for a hybrid modular multilevel converter,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 81-97, 2017.
[19]  R. Alaei, “Modular multilevel converters for power transmission systems,” Ph.D. dissertation, Dept. Elect. Comput. Eng., University of Alberta, Alberta, Canada, 2017.
[20]  P. M. Meshram and V. B. Borghate, “A simplified nearest level control (NLC) voltage balancing method for modular multilevel converter (MMC),” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 450-462, 2015.
[21]  S. Rohner, S. Bernet, M. Hiller, and R. Sommer, “Modulation, losses, and semiconductor requirements of modular multilevel converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2633-2642, 2010.
[22]  A. Dekka, B. Wu, R. L. Fuentes, M. Perez, and N. R. Zargari, “Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 4, pp. 1631-1656, 2017.
[23]  S. Kouro et al., “Recent advances and industrial applications of multilevel converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553-2580, 2010.
[24]  R. Darus, G. Konstantinou, J. Pou, S. Ceballos, and V. G. Agelidis, “Comparison of phase-shifted and level-shifted PWM in the modular multilevel converter,” Proc. Int. Power Electron. Conf., pp. 3764-3770, 2014.
[25]  B. Li, R. Yang, D. Xu, G. Wang, W. Wang, and D. Xu, “Analysis of the phase-shifted carrier modulation for modular multilevel converters,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 297-310, 2015.
[26]  S. Cui, S. Kim, J. J. Jung, and S. K. Sul, “Principle, control and comparison of modular multilevel converters (MMCs) with DC short circuit fault ride-through capability,” Proc. IEEE Appl. Power Electron. Conf. Expos., pp. 610-616, 2014.
[27]  G. Bergna et al., “Mitigating DC-side power oscillations and negative sequence load currents in modular multilevel converters under unbalanced faults-first approach using resonant PI,” Proc. Ind. Electron.Conf., pp. 537-542, 2012.
[28]  D. G. Holmes and T. A. Lipo, Pulse width modulation for power converters: principles and practice. vol. 18. John Wiley & Sons, 2003, pp. 215-258.
[29]  D. G. Holmes and B. P. McGrath, “Opportunities for harmonic cancellation with carrier-based PWM for two-level and multilevel cascaded inverters,” IEEE Trans. Ind. Appl., vol. 37, no. 2, pp. 574-582, 2001.
[30]  R. Marquardt, A. Lesnicar, and J. Hildinger, “Modulares Stromrichterkonzept fur Netzkupplungsanwendungen bei hohen Spannungen,” Proc. ETG-Fachtagung, Bad Nauheim, Germany, pp. 1-7, 2004.
[31]  B. Alamri and M. Darwish, “Precise modelling of switching and conduction losses in cascaded h-bridge multilevel inverters,” Proc. 49th Int. Universities Power Eng. Conf., pp. 1-6, 2014.