[1] C. L. Chen, “Optimal wind–thermal generating unit commitment”, IEEE Trans. Energy Conver., Vol. 23, No. 1, pp. 273-280, 2008.
[2] J. Garcia-Gonzalez, R. de laMuela, L. Santos and A. Gonzalez, “Stochastic joint optimization of wind generation and pumped storage units in an electricity market”, IEEE Trans. Power Syst., Vol. 23, No. 2, pp. 460-468, 2008.
[3] S. Saneifard, N. Prasad and H. Smolleck, “A fuzzy logic approach to unit commitment”, IEEE Trans. Power Syst., Vol. 12, No. 2, pp. 988-995, 1997.
[4] H. Y. Yamin, “Fuzzy self-scheduling for Gencos,” IEEE Trans. Power Syst., Vol. 20, No. 1, pp. 503-505, 2005.
[5] H. Siahkali and M. Vakilian, “Integrating large scale wind farms in fuzzy mid-term unit commitment using PSO”, IEEE Int. Conf. Eur. Electr. Markets, Portugal, 2008.
[6] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning-1”, Info. Sci., Vol. 8, No. 4, pp. 199-249, 1975.
[7] Q. Liang and J. Mendel, “Interval type-2 fuzzy logic systems: theory and design”, IEEE Trans. Fuzzy Syst., Vol. 8, No. 5, pp. 535-550, 2000.
[8] M. Wagenknecht and K. Hartmann, “Application of fuzzy sets of type 2 to the solution of fuzzy equations systems”, Fuzzy Sets and Syst., Vol. 25, No. 2, pp. 183-190, 1988.
[9] N. N. Karnik and J. M. Mendel, “Operations on type-2 fuzzy sets”, Fuzzy Sets and Syst., Vol. 122, No. 2, pp. 327-348, 2001.
[10] N. N. Karnik and J. M. Mendel, “Type-2 fuzzy logic systems: type-reduction”, IEEE Syst. Man Cybern. Conf., San Diego, CA, pp. 2046-2051, 1998.
[11] J. M. Mendel and R. I. John, “Type-2 fuzzy sets made simple”, IEEE Trans. Fuzzy Syst., Vol. 10, No. 2, pp. 117-127, 2001.
[12] M. Mizumoto and K. Tanaka, “Fuzzy sets of type-2 under algebraic product and algebraic sum”, Fuzzy Sets and Syst., Vol. 5, No. 3, pp. 277-290, 1981.
[13] O. Castillo and P. Melin, “Type-2 fuzzy logic: theory and applications”, Springer, Germany, 2008.
[14] J. M Mendel, “Uncertain rule-based fuzzy logic systems: introduction and new directions”, Prentice-Hall, 2001.
[15] M. Majidi, S. nojavan and K. Zare, “Optimal sizing of energy storage system in a renewable-based microgrid under flexible demand side management considering reliability and uncertainties”, J. Oper. Autom. Power Eng., Vol. 5, No. 2, pp. 205-214, 2017.
[16] E. Heydarian-Forushani and H. A. Aalami, “Multi objective scheduling of utility-scale energy storages and demand response programs portfolio for grid integration of wind power”, J. Oper. Autom. Power Eng., Vol. 4, No. 2, pp. 104-116, 2016.
[17] A. Tuohy and M. O’Malley, “Pumped storage in systems with very high wind penetration”, Energy Policy, Vol. 39, pp. 1956-1974, 2011.
[18] B. C. Ummels, E. Pelgrum and W. L. Kling, “Integration of large-scale wind power and use of energy storage in the Netherlands’ electricity supply”, IET Renewable Power Gener., Vol. 2, No. 1, pp. 34–46, 2008.
[19] B. Ummels, M. Gibescu, E. Pelgrum, W. Kling and A. Brand, “Impacts of wind power on thermal generation unit commitment and dispatch”, IEEE Trans. Energy Convers., Vol. 22, No. 1, pp. 44–51, 2007.
[20] M. Black, V. Silva and G. Strbac, “The role of storage in integrating wind energy”, Int. Conf. Future Power Syst., pp. 1-6, 2005.
[21] P. Denholm and M. Hand, “Grid flexibility and storage required to achieve very high penetration of variable renewable electricity”, Energy Policy, Vol. 39, pp. 1817–1830, 2011.
[22] G. Qin, G. Liu, Z. Jing and Y. Zhang, “A preliminary research on the optimal daily operation mode of pumped-storage power plants under electricity market environment”, IEEE/PES Trans. Dist. Conf. Exhib., Asia and Pacific, China, 2005.
[23] M. E. Nazari and M. M. Ardehali, “Optimal scheduling of coordinated wind-pumped storage-thermal system considering environmental emission based on GA based heuristic optimization algorithm”, Int. J. Smart Electr. Eng., Vol. 6, No. 4, pp. 135-142, 2017.
[24] M. Vatanpour and A. S. Yazdankhah, “The impact of energy storage modeling in coordination with wind farm and thermal units on security and reliability in a stochastic unit commitment”, Energy, Vol. 162, pp. 476-490, 2018.
[25] A. Tuohy and M. O’Malley, “Impact of pumped storage on power systems with increasing wind penetration”, IEEE Power Energy Soc. Gen. Meeting, Canada, 2009.
[26] N. Shi, S. Zhu, X. Su, R. Yang and X. Zhu, “Unit commitment and multi-objective optimal dispatch model for wind-hydro-thermal power system with pumped storage”, IEEE Int. Power Elect. Motion Control Conf., 2016.
[27] P. Brown, J. Lopes and M. Matos, “Optimization of pumped storage capacity in an isolated power system with large renewable penetration”, IEEE Trans. Power Syst., Vol. 23, No. 2, pp. 523-531, 2008.
[28] B. Bagen, “Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy”, PhD thesis, University of Saskatchewan, Canada, 2005.
[29] N. Lu, J. Chow and A. Desrochers, “Pumped-storage hydro-turbine bidding strategies in a competitive electricity market”, IEEE Trans. Power Syst., Vol. 19, No. 2, pp. 885-895, 2004.
[30] S. Coupland and R. John, “Geometric type-1 and type-2 fuzzy logic systems,” IEEE Trans. Fuzzy Syst., Vol. 15, No. 1, pp. 3-15, 2007.
[31] GAMS Release 2.50, “A user’s guide”, GAMS, Development Corporation, 1999.
[32] IEEE Reliability Test System Task Force, “The IEEE reliability test system - 1996”, IEEE Trans. Power Syst., Vol. 14, No. 3, pp. 1010-1020, 1999.
[33] S. Wang, S. shahidehpour, D. Kirschen, S. Mokhtari and G. Irisarri, “Short term generation scheduling with transmission and environmental constraints using an augmented lagrangian relaxation”, IEEE Trans. Power Syst., Vol. 10, No. 3, pp. 1294-1301, 1995.
[34] H. Siahkali and M. Vakilian, “Electricity generation scheduling with large-scale wind farms using particle swarm optimization”, Electr. Power Syst. Res., Vol. 79, pp. 826-836, 2009.